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Abstract

This thesis encompasses research on Artificial Intelligence in support of automating scientific
discovery in the fields of biology and medicine. At the core of this research is the ongoing develop-
ment of a general-purpose artificial intelligence framework emulating various facets of human-level
intelligence necessary for building cross-domain knowledge that may lead to new insights and dis-
coveries. To learn and buildmodels in a data-drivenmanner, we develop a general-purpose learning
framework called Syntactic Nonparametric Analysis of Complex Systems (SYNACX), which uses
tools from Bayesian nonparametric inference to learn the statistical and syntactic properties of bi-
ological phenomena from sequence data. We show that the models learned by SYNACX offer
performance comparable to that of standard neural network architectures. For complex biological
systems or processes consisting of several heterogeneous components with spatio-temporal inter-
dependencies across multiple scales, learning frameworks like SYNACX can become unwieldy
due to the the resultant combinatorial complexity. Thus we also investigate ways to robustly re-
duce data dimensionality by introducing a new data abstraction. In particular, we extend traditional
string and graph grammars in a new modeling formalism which we call Simplicial Grammar. This
formalism integrates the topological properties of the simplicial complex with the expressive power
of stochastic grammars in a computation abstraction with which we can decompose complex sys-
tem behavior, into a finite set of modular grammar rules which parsimoniously describe the spa-
tial/temporal structure and dynamics of patterns inferred from sequence data.
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Public Abstract

This thesis encompasses research on Artificial Intelligence in support of automating scientific
discovery in the fields of biology and medicine. At the core of this research is the ongoing develop-
ment of a general-purpose artificial intelligence framework emulating various facets of human-level
intelligence necessary for building cross-domain knowledge that may lead to new insights and dis-
coveries. To learn and buildmodels in a data-drivenmanner, we develop a general-purpose learning
framework called Syntactic Nonparametric Analysis of Complex Systems (SYNACX), which uses
tools from Bayesian nonparametric inference to learn the statistical and syntactic properties of bi-
ological phenomena from sequence data. We show that the models learned by SYNACX offer
performance comparable to that of standard neural network architectures. For complex biological
systems or processes consisting of several heterogeneous components with spatio-temporal inter-
dependencies across multiple scales, learning frameworks like SYNACX can become unwieldy
due to the the resultant combinatorial complexity. Thus we also investigate ways to robustly re-
duce data dimensionality by introducing a new data abstraction. In particular, we extend traditional
string and graph grammars in a new modeling formalism which we call Simplicial Grammar. This
formalism integrates the topological properties of the simplicial complex with the expressive power
of stochastic grammars in a computation abstraction with which we can decompose complex sys-
tem behavior, into a finite set of modular grammar rules which parsimoniously describe the spa-
tial/temporal structure and dynamics of patterns inferred from sequence data.
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Moࢢvaࢢon

Modern advances in high-throughput and ”–omics” technologies have generated large amounts

of data, capturing novel information about various complex biological systems and processes across

multiple spatial and temporal scales. Recent breakthroughs in deep-learning and artificial intelli-

gence have been shown to excel in using this data to build models ranging from image classification

models for subcellular protein localization [1], to predictive models for regulatory genomics [2].

These deep-learning frameworks and the neural-network architectures on which they are based,

present tremendous opportunities for advancement in modeling and analyzing complex phenom-

ena in the fields of biology and medicine [3]. However, in the absence of expert supervision or

annotated data, significant challenges continue to complicate both learning and predictive mod-

eling of many biological systems/processes due their complex interdependencies. The domain of

complex biological systems and processes include biological phenemona such as gene regulatory

networks, cellular processes and infectious diseases, which can be characterized by a network of

interactive and dynamic components often including signaling transduction pathways and positive

and negative feedback loops across multiple scales of resolution. These complex interdependen-

cies complicate the learning process by introducing uncertainty about the data used and the models

constructed. While data uncertainty can be attributed to a lack of examples and imperfections in

the measurement process, model uncertainty arises from having insufficient prior knowledge about

the pertinent variables and multi-level relations inherent to a given system.

This thesis, explores an alternative approach to Artificial Intelligence called the Syntactic Non-

parametric Analysis of Complex Systems (SYNACX), with which computational models can be
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learned, despite these uncertainties, directly from data and without expert supervision. We postu-

late that by emulating those facets of human intelligence which enable general-purpose learning,

we can:

1) infer subtle and latent patterns from various data sources over time, given limited a priori

knowledge; and

2) construct computational models that can be validated and integrated with existing knowledge

previously learned or found in the literaure.

As a proof of concept, the underlying theory and implementation of this approach is evaluated in

online prediction tasks using biomedical data, specifically electrocardiography (ECG) waveforms

and live-cell imaging data sequences. The content of this thesis is as follows:

• Chapter 1 briefly presents the key concepts adopted in development of the methodologies

described in this thesis.

• Chapter 2 introduces the use of topological structures as the primary data abstraction in a

new modeling formalism called Simplicial Grammar.

• In Chapter 3 presents the SYNACX algorithm and the advanced Bayesian probability model

designed for unsupervised learning and incremental model construction in high-throughput

data applications.

• Chapter 4 evaluates the feasiblity of Simplicial Grammar and SYNACX in online prediction

and classification tasks for biomedical datastreams.

• Chapter 5 presents a final discussion of the analyses presented in the thesis and a description

of future work.

2
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CHAPTER 1

Background

In general, pattern-recognition methods can be broadly classified as being one of two ap-

proaches: statistical or syntactic [4, 5]. Statistical approaches are based on the statistical mod-

eling of data and the application of probability theory and decision theory. Despite being the more

popular approaches, statistical methods suffer from a significant shortcoming in their handling of

contextual or structural information in patterns. While many statistical approaches struggle to in-

corporate complex relational information as discriminating features, syntactic pattern recognition

methods excel in tasks where such information is abundant [5]. Syntactic methods enable the mod-

eling of complex patterns through recursive decomposition of a problem into progressively sim-

pler subpatterns, the interrelationships in the hierarchy of decompositions being well defined [6].

Rather than regarding patterns as numeric vectors in a finite-dimensional vector space, syntactic

approaches describe patterns in terms of very simple sub-elements, called pattern-primitives, and

a set of rules governing the relationships among them. The collection of primitives and rules to-

gether form the grammarwhich characterizes a specific class of patterns. Thus, in syntactic pattern

recognition, the inference of a set of generative grammars for each class of patterns results in the

design of a pattern classifer. The collection of patterns and the processes by which they are gen-

erated, provide the basis of a pattern recognition system that can be used for modeling complex

systems. Despite an initial popularity, syntactic approaches have been largely ignored due to the

computational intractability of inferring the appropriate stochastic grammars.

As will become evident in subsequent chapters, our primary objective is to construct a compu-

tational framework and modeling formalism which may enable a computer to emulate a expert’s

3
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ability to elucidate critical patterns, derive predictions and integrate knowledge learned from mul-

tiple modalities. The proposed approach combines statistical and syntatic approaches via the use of

Bayesian nonparametric models for the purposes of inferring the implicit temporal dependencies

inherent to a heterogeneous data stream, and explictly modeling them as a probabilistic grammar

depicting a collection of oriented simplex chains. In this chapter, we introduce concepts from

Grammar-based modeling, Probabilistic modeling and Algebraic topology, which are combined

for the purpose of building an Artificial General Intelligence framework.

1.1 Arࢢficial General Intelligence and General-Purpose Learning

Artificial Intelligence (AI) is the interdisclipinary study of the mechanisms underlying thought

and intelligent behavior and their simulation in computer software algorithms [7]. The original

goal of the field of Artificial Intelligence has been the construction of software frameworks with

demonstrable ’human-level general intelligence’ [7–9]. This goal has been found to be challeng-

ing [10–12]. As a result, AI research as of late has instead focused on the production of frameworks

displaying domain-specific intelligence on a narrow range of issues and highly constrained tasks.

The focus of these ’narrow AI’ frameworks have helped the field explore critical methodologies,

and produce results that have attracted wide attention to the field. In addition, the sub-field of

Artificial Intelligence known as Machine Learning helps to achieve a set of goals similar to those

of AI but with a focus on the development of algorithms that allow computers to automatically

learn from data. The direct objective of this sub-field is to develop software programs for spe-

cific practical learning tasks in application domains [8]. In recent years, with the rapid pace of

technological advancement and decreasing costs of entry for high-throughput computing, interest

in the original goals of AI and recognition of the necessity and feasability of achieving ’human-

level intelligence’ has resulted in growth in the field of Artificial General Intelligence (AGI) [12].

AGI research differs from ordinary AI research by emphasizing the versatility and general-purpose

nature of intelligence, and the inclusive development of computational frameworks that can com-

bine five critical facets of human-level intelligence: multi-task learning, transfer learning, one-shot

learning, multi-modal learning, and reinforcement learning [12–14].

4
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1.1.1 Mulࢢ-task learning

The development of an AGI framework with the ability to multi-task is critical in the pursuit of

’human-level intelligence’. This seemingly effortless ability in humans allows for several hundred

tasks to be performed concurrently. One naive approach to achieve this is to learn different tasks

independently using multiple models. However such an approach does not exploit the interdepen-

dencies between related tasks. A more elegant solution is the development of a framework that

can learn multiple tasks simultaneously. This idea of multi-task learning in the machine learning

literature focuses on the design of a single learning algorithm that can learn multiple tasks simul-

taneously, with the goal of each learned task acting as an aide during the learning of other related

tasks. In recent years, research has progressed in the development ofmulti-task learning algorithms,

particularly in Natural Language Processing (NLP) [15,16] and Question-Answering [17] domain

tasks. Despite their success in the aforementioned domains, current multi-task learning algorithms

are limited to tasks which utilize the same data type (i.e. text). Thus methods with the ability to

multi-task with several heterogeneous data sources (e.g., image, text, and speech signal) remains

elusive.

1.1.2 Transfer Learning

In the computer science and cognitive psychology literature, transfer learning refers to the hu-

man ability to transfer learned experiences from one task to another task such that the new task can

be learned more efficiently [18]. Thus, in a sense, multi-task learning can be viewed as a transfer-

learning problem, in which, the goal is to transfer knowledge between various tasks in order to

support learning in one another [19].

1.1.3 One-Shot Learning

While the successful development of algorithms for multi-task and transfer learning is a tech-

nological improvement in itself, these methods must also be scrutinized under learning conditions

similar to humans in order to achieve human-level performance. Specifically, they must demon-

strate the ability to make accurate inferences given only limited exposure to a concept, category or

5
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situation. This ability to learn from one or very few data examples is referred to as one-shot learn-

ing [20, 21]. Despite growing interest in evaluating the one-shot learning ability of deep learning

frameworks when applied to image and static data [22], research investigating one-shot learning

methods designed specifically for sequence data remains minimal [23], necessitating further re-

search in one-shot sequence learning methodologies.

1.1.4 Mulࢢmodal Learning

Aswas previously mentioned, most of the existing research focuses onmulti-task transfer learn-

ing across similar data sources [24]. However, a true general-purpose learning algorithm must

demonstrate the ability to work with multiple modalities of data (e.g. text, image, speech, and

video). In recent years, researchers have started looking into this problem [25–28] but a general-

purpose algorithmwhich can take an arbitrary set of modalities as input continues to remain elusive.

1.1.5 Reinforcement Learning

The last facet of human-intelligence to be considered here reflects the ability of humans to learn

many tasks without direct supervision by learning through interactions with their environment. This

ability to interact with the environment and learn through feedback is called reinforcement learning.

In an AGI framework this amounts to learning a policy for how to interpret input data by applying a

reward function to new experiences and finding the policy that maximizes the total reward. As one

of the oldest fields in machine learning, reinforcement learning has been applied to various domains

and recently attained wide popularity due to success in unsupervised game-play tasks [29–31].

1.2 Neural Networks

ANeural Network, or Artificial Neural Network, is a computational model consisting of a set of

nodes, connected with weighted interconnections, whose connectivity tries to replicate the structure

of neurons in the human brain. With such a weighted connectivity structure, the system is highly

adaptive to new information flows. Neural network models offer a nonlinear, adaptive modeling

approach, in which, the architecture and the parameters are determined by a dataset. The nodes
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of a neural network model are organized into layers: the input layer, one or more hidden layers

and the output layer. Each node is characterized by its own set of connection strengths, activation

function and threshold value. The effect of a set of input signals x⃗ on a node is equal to the product

w⃗ · x⃗, where w⃗ are weights which can take on any real value. Research on artificial neural networks

has undergone various periods of extensive activity, beginning with the pioneering work of Mc-

Culloch and Pitts on the perceptron [32], followed by the introduction of Rosenblatt’s perceptron

convergence theorem [33], and the work of Minsky and Papert showing the limitations of the sim-

ple perceptron [34]. This early work has led to the introduction and reinvention of various neural

network architectures. Among the most popular neural network architectures is the feedforward

neural network, where information flow is unidirectional and the output of each node is calculated

by passing the sum of the weighted signals from incoming nodes through an activation function.

The activation ai, or net input of the node is given as the sum of all weighted inputs from incoming

nodes j:

ai =
N∑

j=1
wijxj (1.1)

By subtracting the sum of weighted inputs by the node threshold ϑi, we can determine the output

signal yi. This output signal’s profile is described by the activation function A():

yi = A(ai) = A(
N∑

j=1
wijxj − ϑi) (1.2)

In addition to the activation function’s original binary form, several continuous and nonlinear ac-

tivation functions may be used. Among the most common activation functions is the sigmoid

function:

A(ai) = 1
1 + e−ai

(1.3)

Prior to its implementation on a test dataset, the feed-forward neural network endures a training

process using a learning algorithm such as backpropagation, where the node weights at each pre-

vious layer are recursively modified such that their error is reduced. This algorithm consists of

computing the error contribution of hidden-layer nodes by transmitting the error computed at the

output-layer nodes back to the hidden-layer nodes through the same weighted connections used to

7
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propagate activation signals from hidden-layer to output-layer nodes. For networks designed with

an arbitrary number of layers and nodes, this core algorithm performs gradient descent of the error

function E. This function uses a set of training patterns composed of pairs of input vectors x⃗p and

desired output vectors z⃗p, to evaluate the set of weights that best correspond to the desired response

profile. This evaluation requires calculating the mean quadratic error between the desired response

profile and the actual neural network output signal:

E = 1
2

∑
p

∑
i

(zp
i − y

p
i )2 = 1

2
∑

p

∑
i

(zp
i −

∑
wijx

p
j)2 (1.4)

where p denotes a training pattern, and y the actual neural network output signal.

Among the most prominent feed-forward neural networks are the two-layer perceptron and the

three-layer radial-basis function neural network [35]. The perceptron works as a binary classifier

without any hidden layers, however, once it consists of three or more layers, with at least one

hidden layer, the perceptron is referred to as a multilayer perceptron. As the name implies, the

radial-basis function neural network uses the radial-basis function as an activation function. This

type of function has a radial symmetry such as a Gaussian function, which causes the activation

of a node to depend on its distance from a center vector, thus allowing it to respond to a local

region of feature space. These static feed-forward networks, however, struggle on more complex

classifications, and since they are mere input-output devices they cannot detect or produce temporal

sequences [36, 37].

In problems, such as feature detection or time sequence formation, where dynamical behavior

is necessary, either a dynamic neuron model [8] may be used, or nodes in already existing neu-

ral network are coupled with feedback connections. The underlying principle of dynamic neuron

models is the use of a feedback loop between a node’s input and output along with a temporal delay

∆. This temporal delay indicates the time between updates of activation levels at consecutive time

steps, thus indicating the length of time a node can hold a specific activation level. Along with a

weight µi, the feedback loop (recurrent connection) brings the current activation back to the input

used to compute the next activation level. Thus, for each update step n, we compute the activation

followed by the output signal:

8
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1) ai(n+ 1) = µiai(n) + ∑
j=1 wijxj(n)

2) yi(n) = A(ai(n)− ϑ)

Nevertheless, to provide the necessary temporal dynamics to an already existing static neural net-

work, recurrent connections may be added from neighboring nodes in either the same layer or from

higher layers. In such case the response profile of a node is given by:

yt
i = A(

N∑
j

wijX
t
j +

N∑
j

rt−1
il − ϑi), (1.5)

where qt−1
l are the outputs of same-layer nodes at the previous time step, and rt−1

il are the connec-

tions between them.

Most classic neural network models are typically supervised and offer only discriminative mod-

els that do not describe their input [38]. These discriminative models are a general class of ma-

chine learning models that are commonly used to model the dependence of an unobserved variable

y on an observed variable x. As opposed to discriminative models, generative models are typi-

cally more flexible in expressing dependencies in complex learning tasks and are not inherently

supervised [8]. Despite not allowing samples to be generated from the joint distribution of two

variables, discriminative models yield superior performance for classification and regression tasks

where this constraint is generally obsolete. These discriminative, or non-generative, approaches

develop black-box models of the data that often map inputs to the correct answer by requiring a

large quantity of training data that typically leads to over-fitting. While newer forms of neural

network such as the Boltzmann machine do offer stronger generative semantics [39], they typi-

cally use stochastic sampling to learn a probability distribution. In contrast to those neural network

models that adapt to supervised learning algorithms, some neural network implementations use un-

supervised learning during the training process. Unsupervised learning allows for the extraction

of statistically significant information, or memorization and reconstruction from the distribution

of input patterns. Without any feedback from the user or environment, unsupervised learning con-

sists of detecting common or distinctive features that allow the neural network to classify the in-

put patterns. Some of the statistical operations performed to learn specific properties of the input

pattern distribution include principle component analysis, probability density function parameter

9
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estimation, and computation of correlation indices. However, in order for these operations to detect

structure, input pattern distributions must present sufficient redundancy. Many neural network ma-

chine learning models also include the use of gradient descent methods in their implementations.

Gradient descent is an iterative optimization procedure used to minimize an objective function Jθ

parameterized by a given machine learning model’s parameters θ ∈ Rd. This method updates the

model parameters in the opposite direction of the objective function gradient ∇JJθ with respect

to the parameters. Gradient descent algorithms utilize a learning rate η that determines the size of

steps used to reach a (local) minimum. Given a large dataset, the calculation of the gradient can

become costly since every data point must be processed before making a single step. An alternative

approach, called stochastic gradient descent [40], updates θ sequentially with each observation i

such that θ := θ − η · ∇θJi(θ). This approach reaches an optimal θ much faster and can be used

for online learning, however, it results in a larger variance of the loss function and never fully con-

verges to the local or global minimum. There are many variations of the stochastic gradient descent

algorithm [40–42].

1.2.1 Neural Networks for Time-Series Predicࢢve Modeling

Since neural networks are able to learn complex patterns and estimate both linear and nonlinear

functions, they are widely used for modeling and predicting time-series data. Predictive model-

ing in neural networks involves two phases: training and prediction. During training, the neural

network performs supervised learning by presenting training data at the input layer and dynami-

cally adjusting the model weights in order to achieve a desired output value. The prediction phase

consists of presenting a new, unobserved input to the neural network and calculating the output,

thereby predicting the outcome of the new input dataset. Traditional feed-forward neural networks

often operate on a fixed-size window of a time-series data sequence and therefore cannot capture

historical dependencies that fall outside of the data window [36, 43]. By contrast, Recurrent Neu-

ral Networks (RNNs), which are built on the same computational unit as the feed-forward neural

network contain at least one feedback connection. Such recurrent/feedback connections allow for

the network activation from a previous time step to be fed as input to influence predictions at the

current time step. This process enables the models to perform temporal processing and sequence

10
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learning. Recurrent neural network architectures can have many different forms. Some of the more

simple recurrent neural network models often exploit the powerful non-linear mapping capabili-

ties of the multi-layer perceptron, and have some form of memory, whereas others have a more

uniform structure in which all neurons are interconnected. For simple architectures and models

using deterministic activation functions, learning can be achieved using gradient descent proce-

dures similar to those that enable the backpropagation algorithm for feed-forward networks. The

standard backpropagation algorithm can be extended to perform gradient descent on a completely

unfolded recurrent neural network via a technique known as backpropagation through time (BPTT).

However, training recurrent neural networks with the backpropagation through time technique is

often difficult due to the vanishing gradient and exploding gradient problems. The influence of

a given input on the hidden layers, and therefore on the network output, either decays or grows

exponentially when cycling around the network’s recurrent connections. These problems impose

limitations on a recurrent neural network’s ability to model long range context dependencies [44].

To address these problems, a novel recurrent neural network architecture called Long Short-Term

Memory (LSTM) [45] has been proposed. The long short-term memory architecture forces con-

stant error through the internal state of special memory units called memory blocks. Each memory

block contains memory cells with self-connections which attempt to store the temporal state of the

network. Access to these memory cells is protected by special logistic units called gates, which

control the flow of information. Each memory block contains an input gate to control the flow of

input activations into the memory cell, an output gate to control the output flow of cell activations

into the rest of the network and a forget gate. The forget gate scales the internal state of the mem-

ory cell before subsequently feeding it back to the cell as input through self-connections, thereby

adaptively forgetting or resetting the cells memory. A slightly more dramatic variation on the long

short-term memory architecture is the Gated Recurrent Unit (GRU) [46]. Among the most signifi-

cant changes made by this architecture are the combining of the forget and input gates into a single

update gate and the merging of the cell state and hidden state. The resulting model is simpler than

standard long short-term memory models, and has been growing increasingly popular in sequence

prediction and sequence labeling tasks [47–49].

11
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1.3 Grammar-based Modeling

1.3.1 String Grammar

In formal language theory, a language L is defined as a (possibly infinite) set of finite length

strings (sequences of elements) over a finite alphabet [50]. An alphabet is specified by giving a

finite set, Σ, whose elements are called pattern-primitives (or symbols). Any set qualifies as a

possible alphabet, as long as it is finite. Σ∗ denotes the set of all finite strings of primitives from Σ,

including the empty string. Elements of L are called ’words’, ’phrases’, or ’sentences’ in formal

language theory, linguistics, or bioinformatics, respectively. A string grammar of such a language

is a finite device which generates all and only the strings ofL in a deterministic manner [51]. Given

such definitions, a primary goal of grammar-based modeling is to construct a system of rules from

which the language can be derived. Put simply, a grammar is not merely a description of a language;

it is an explanatory theory about the structure and patterns of a language–i.e., why a language has

the properties it does. To acquire a language, one must devise a hypothesis compatible with the

observed data and infer the grammar(s) appropriate for the data currently available [50, 52].

DEFINITION 1.1 (Context-Free Grammar) A context-free grammar G is a formal system that gener-

ates a language L(G) ⊆ Σ∗. It uses a set V of non-terminal symbols (one of which serves as the

axiom), and a set of production rules that have the formX → α, whereX ∈ V and α ∈ (V ∪Σ)∗.

The production rules of a grammar are used to derive the words/strings of the language, start-

ing from the axiom. In this process, the production rules are used as rewrite rules. In constrast to

the non-terminal symbols from V (denoted by upper-case letters), the primitives from Σ are called

terminal symbols, because once generated during a derivation, they are never replaced. A deriva-

tion of a word w ∈ L(G) begins with the axiom symbol, and incrementally replaces one of the

nonterminal symbols in the emergent string according to one of the productions. Each derivation

can be subsequently represented in the form of a tree. The inner nodes of the tree are labeled with

the production names and terminal symbols are depicted as leaf nodes. By considering these leaf

nodes from left to right, the string w ∈ L(G) produced by the derivation can be obtained. Given a

context-free grammar G and string w ∈ Σ∗, the process known as syntax checking or parsing con-
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sists of constructing a derivation tree forw in order to determine whetherw ∈ L(G). The derivation

tree constructed for a given w ∈ Σ∗ during parsing is called a parse tree. A context-free-grammar

is considered syntactically ambiguous, if there is more than one parse tree for any given w. In such

case, the set of all parse trees forw is denoted by TG(w). While syntactic correctness, w ∈ L(G), is

taken for granted in some domains such as bioinformatics and natural language prcessing, in others

ambiguous grammars are considered a nuisance and actively avoided [50]. In situations where a

large number of parse trees for a given w ∈ Σ∗ exist, a scoring scheme and objective function

can be used to select the most plausible tree. When this scoring scheme is based on a probabilistic

model, we obtain stochastic context-free grammars. Example parse trees for the same string using

a probabilistic scoring scheme are shown in Figures 1.1a and 1.1b.

DEFINITION 1.2 (Stochasࢢc Context-Free Grammar) A stochastic context-free grammar G is a

context-free grammar which associates a transition probability pr with each production rule r, such

that for all A ∈ V , with A → α1|α2|...|αk, named r1, r2, ..., rk,
∑k

i=1 pri
= 1. The probability

of a parse tree t, PG(t), is given as the product of the pri
for all uses of productions ri in t. The

probability of a word w assigned by grammar G is then defined as PG(w) = ∑
t∈TG(w) PG(t).

According to this definition, PG(w) = 0 if w /∈ L(G) and under some conditions, a stochastic

grammar defines a probability distribution on L(G), i.e. ∑
w∈L(G) PG(w) = 1 [53].
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(a) Parse Tree 1
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(b) Parse Tree 2

FIGURE 1.1 Parse Trees for Identical Strings using Probabilistic Scoring Scheme
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1.3.2 Higher-order Grammars

In general, when learning a grammar, one has to decide the intended use of the grammar. Gram-

mars have two applications: to parse or to generate a language. In addition to its use in linguistics,

grammar induction is commonly used as an approach to data mining. While string grammars are

very useful, they are limited to univariate datasets that can be represented as a sequence. Many

datasets in biology and medicine, however, can have significant structural components that are se-

quential, non-sequential or a combination of both due to their inherent multi-scale relations and

temporal dependencies. As a result, higher-order grammars using more complex data abstractions

such as trees, graphs and matrixes have become increasingly popular alternatives to traditional

string grammars since they can still represent the simpler feature vector-type datasets as well as

sequential, multi-dimensional datasets [54–56].

One such higher-order grammar known as graph grammar is used to parse and generate graphs.

A graph grammar is a mathematical structure that consists of an initial graph G0 together with a

collection of local production rules. This collection of rules can be thought of as binding rules and

conformational changes used to model the construction of a graph or graph sequence [57]. The role

of the production is to replace one sub-graph by another and act as local replacement operations

on graphs. This process of replacing one sub-graph with another depends on a specification of the

desired embedding: edges to/from a predicate sub-graph must be transformed into edges to/from

the succeeding sub-graph. (This is in contrast to string grammars, which do not require explicit

specification of an embedding: there is only one way to insert a replacement string substring into

a host string.)

Let G denote a labeled graph: G = (V,E, l) where V is a set of vertices, E ⊂ V × V is a set

of edges, and l : V → Σ is a labeling function over some alphabet Σ . We denote by VG, EG, lG

the vertex set, edge set and labeling function of the graph G or by the triple (V,E, l). We assume

basic definitions from graph theory such as connectivity, isomorphism, and embedding. More

specifically, a rule is a pair of graphs r = (gL, gR) where VgL
= VgR

. The graphs gL and gR are

called the left hand side and right hand side of r respectively. The size of r is |VgL
| = |VgR

|. Rules

are said to be constructive if (EgL
⊂ EgR

) . A rule r is applicable to a graph G if there exists a
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label-preserving embedding h : gL → G. An action of a rule r on a graph G is a pair (r, h) such

that r is applicable to G via h. The application of (r, h) to G yields a new graph G′ = (V ′, E ′, l′)

defined by replacing the image of gL in G with a copy of gR. More formally, G′ is defined thus:

V ′ = V

E ′ = (E − h(x), h(y)|x, y ∈ gL ∪ h(x), h(y)|x, y ∈ gR)

l′(x) =


l(x) ifx /∈ h(v)

lgR
◦ h−1(x) otherwise

We write G r,h−→ G′ to denote that G′ was obtained from G by the application of (r, h).

As an example, consider the development of a graph grammar used to describe the behavior

of a system of particles over time. In this setup, imagine each particle can take one of three con-

formations corresponding to primitives in our alphabet, Σ = {va, vb, vc}. Let us assume we begin

with eight particles, each of which displaying conformation va. Thus, at the initial timestep, t0, the

graph G0 modeling our system depicts the system of particles as a set of labelled vertices with no

edges. The example set of production rules for this grammar, denoted Φ, define how this graph

representation can evolve. In this particular set, the rules are considered constructive and describe

the process of taking a pair of vertices within a graph, creating an edge between them and chang-

ing their conformation. Furthermore, graph grammar rule sets can also include production rules

describing the destruction (rd∗), relabelling (rl∗) and higher-order aggregation (ra∗) of various size

sub-graphs. It should be noted that restrictions can be imposed on a graph grammar application

such that only one rule can be applied at a time or the validity of a rule set be dependent on the

occurence of a specific sub-graph. Figure 1.2 depicts an example assembly sequence for the given

graph grammar model.

Φ =



rc1 : vava → vb − vb

rc2 : vavb → vb − vc

rc3 : vbvb → vc − vc

rd∗ : vb − vb → vava
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rl∗ : vbvb → va − vc

ra∗ : vc − vc − vc → vc − va − vc

1.4 Probabilisࢢc Modeling

The amount of information that is available in the form of unstructured and semistructured data

keeps increasing at an unprecedented rate. As the number of these rich datasets continues to grow,

researchers are becoming interested in learning increasingly complex information and interactions

directly from the data [58]. Probabilistic modeling in general, and Bayesian approaches in par-

ticular, provide a unifying framework for flexible modeling that includes clustering, prediction,

estimation, and uncertainty quantification [59–61].

1.4.1 Prerequisites of Probabilisࢢc Modeling

There are many complex phenomena in nature whose outcome cannot be predicted with cer-

tainty in advance but for which the set of all possible individual outcomes is known. These are

referred to as random phenomena or random experiments, and are the primary focus of probabilis-

tic modeling [62, 63]. The set of individual outcomes or sample points/ elementary events for a

random experiment is known as the sample space of the experiment and denoted Ω. Any subset A

of the sample space Ω is called an event, and is said to occur if the random experiment and the ob-

served outcome x ∈ A. For the sake of brevity we present only those essential concepts underlying

the methodologies discussed in subsequent sections of this dissertation.

DEFINITION 1.3 A δ-algebra F on set Ω, is a set of all subsets on Ω satisfying the following condi-

tions:

1) Ω ∈ F ;

2) A ∈ F =⇒ Ac ∈ F , where Ac = Ω− A;

3) A1, A2, ... ∈ F =⇒
∞∪
n
An ∈ F ;
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FIGURE 1.2 An example assembly sequence generated by a graph grammar model
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From conditions (2) and (3), it follows that the empty set ϕ = Ωc ∈ A and thus the intersection
∞∩
n
An = (

∞∪
n
Ac

n)c ∈ F .

DEFINITION 1.4 A probability measure P on the pair (Ω, F ) is a function P : F → [0,∞], satisfy-

ing the following properties:

1) P (A) ≥ 0, for all A ∈ F ;

2) A ∩B = ϕ =⇒ P (A ∪B) = P (A) + P (B);

3) P (Ω) = 1

4) B1 ⊃ B2 ⊃ ... ⊃ Bn ⊃ ... and
∞∩
n
Bn = ϕ =⇒ lim

n→∞
P (Bn) = 0.

The triple (Ω, F, P ) is called a probability space.

DEFINITION 1.5 A random variable X on a probability space (Ω, F, P ) is a function X : Ω → R,

satisfying {ω ∈ Ω|X(ω) ≤ x} ∈ F , for all x ∈ R.

THEOREM1.6 LetXi, i = 1, 2, ..., n, be discrete random variables on a probability space (Ω, F, P ).

Then the linear combination

c1X1 + c2X2 + ...+ cnXn

is a random variable on (Ω, F, P ), for all ci ∈ R, i = 1, 2, ..., n..

DEFINITION 1.7 A random variableX : Ω→ R on a probability space (Ω, F, P ), is called discrete,

if the set D = {x|P (X = x) > 0} consists of either a finite set, x1, x2, ..., xn, or an infinite

countable set, x1, x2, ..., where the sum equals one

∑
xi∈D

P (X = xi) = 1 (1.6)

DEFINITION 1.8 A distribution fX of a discrete random variableX on probability space (Ω, F, P ),

is defined by

fX(xi) = P (X = xi), (1.7)

for all xi ∈ D = {x|P (X = x) > 0}.

THEOREM 1.9 If fX is a distribution of a discrete random variable X : Ω→ R, then

1) fX(x) > 0, for all x ∈ R and fX(x) > 0⇔ x ∈ {x1, x2, ..., xn, ...} ⊂ R;
18
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2)
∑

xi∈D fX(xi) = 1.

DEFINITION 1.10 Let X : Ω → R be a discrete random variable on a probability space (Ω, F, P ).

The expected value or mean of X , µ = E(X), is defined by

µ = E(X) =
∑

xi∈D

xiP (X = xi), (1.8)

provided that the sum equals ∑
xi∈D

|xi|P (X = xi) <∞, (1.9)

where D = {x|P (X = x) > 0}.

DEFINITION 1.11 Let X : Ω → R be a discrete random variable on a probability space (Ω, F, P ).

The variance of X , δ2 = V ar(X), is defined by

δ2 = V ar(X) = E[(X − µ)2] =
∑

xi∈D

(xi − µ)P (X = xi), (1.10)

where µ is the expected value of X and D = {x|P (X = x) > 0}.

DEFINITION1.12 A stochastic processwith state spaceS is a sequence {Xt}t∈T of random variables

Xt ∈ S defined on the same probability space (Ω, F, P ).

Here, the set T is called the parameter set and the index t ∈ T represents time. Thus the state

Xt, t ∈ T , can be thought of as the state of the process at time t. If T is finite or countable, the

process is referred to as a discrete-time or discrete parameter process.

1.4.2 Bayesian Probability

In Bayesian statistics, probability is interpreted as a measure of our belief in an event, i.e., how

confident we are in the occurence of an event [64]. Thus, if we believe with absolute certainty that

an event will or will not occur, a belief of 1 or 0 will be assigned to the event, respectively. Other-

wise, beliefs between 0 and 1 may be assigned to events in order to allow for weightings of other

outcomes. This Bayesian interpretation of probability differs from traditional frequentist statistics

where it is generally assumed that probability is the long-term frequency of events [64–66]. To clar-
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ify this distinction, consider for example the probability of car accidents which under a frequentist

interpretation is the long-term frequency of car accidents. While the logic behind this interpreta-

tion makes sense for the probability of some events, it becomes increasingly difficult to justify its

application to events which do not have a long-term frequency of occurences. For example, in the

case of political elections in the United States, it is very common to assign probabilities to elec-

tion outcomes despite the fact that each election is a unique event and occurs only once. In both

examples, the Bayesian interpretation of probability is more intuitive and applicable. In the case

of the probability of a car accident, if an individual has observed the frequency of car accidents,

his/her belief will also be equal to the long-term frequency, excluding any outside evidence. By

using this definition of probability being a measure of belief, or confidence in the occurence of

an event, it also becomes more appropriate to assign probabilities to election outcomes since we

are evaluating an individual’s confidence in a specific outcome. Under this Bayesian philosophy,

inference constitutes updating one’s beliefs after considering new evidence. It should be noted that

this philosophy of using probability as a measure of belief that can be subsequently updated after

seeing new evidence is reflected in human learning and reasoning [10,64]. As we interact with the

world around us; we observe partial truths, but gather evidence to form beliefs. In the 18th century,

the Englishman and namesake of the field of Bayesian statistics, Thomas Bayes, became aware of

a relation that is now known as Baye’s Theorem [65]:

p(A|B) = p(B|A)p(A)
p(B)

∝ p(B|A)p(A) (1.11)

This theorem provides an abstract statement about conditional probabilities of eventsA andB, that

when reinterpreted, provides a formula for Bayesian inference:

p(θ|D) = p(D|θ)p(θ)
p(D)

(1.12)

Here, θ is an event and D is data which may give evidence for or against θ. This formula decom-

poses into four prinicipal terms:

1) The prior P (θ) is the probability of θ before the data is considered.
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2) The posterior P (θ|D) is the probability of θ after the data is considered.

3) The likelihood P (D|θ) is the evidence about θ provided by the data D.

4) P (D) is the total probability of the data when all possible events are taken into account.

If the prior and the likelihoood are known for all events, then (1.12) computes the posterior exactly.

This is called the deductive logic of probability theory which provides a direct way for comparing

events, drawing conclusions and making decisions. In most experiments however, the prior proba-

bilities on the events are not known in which case inference must be performed [64–66]. Bayesian

inference differs from traditional statistical inference by its preservation of uncertainty. Under the

Bayesian paradigm, the introduction of prior uncertainty about events acknowledges that any guess

made can be potentially wrong. Observing data, evidence, or other information, allows us to up-

date our beliefs, and to make our guess less wrong. Thus, instead of completely discarding a prior

belief after seeing new evidence, the prior is re-weighted in order to incorporate new evidence. As

the number of instances N of evidence, or data, acquired increases, the less our prior belief mat-

ters. In addition, as N → ∞, results obtained via Bayesian inference often converge with those

obtained via frequentist methods. Hence for largeN , traditional statistical inference is more or less

objective. However, for a smaller N , inference becomes more unstable (i.e., frequentist estimates

display more variance and larger confidence intervals). In such cases, the use of Bayesian meth-

ods via the introduction of a prior, return of probabilities (instead of a scalar estimate), allow us to

preserve the uncertainty that reflects the instability of statistical inference of a small N dataset.

We can see this mathematically in (1.12), where the posterior distribution for a parameter θ,

given a dataset D can be written as:

p(θ|D) ∝
likelihood

p(D|θ) ·
prior

p(θ)

or, on the log scale,

log(p(θ|D)) = c+ L(θ;D) + log(p(θ))

Here, we observe that the log-likelihood, L(θ;D) = log(p(D|θ)), scales with the sample size,

since it is a function of the data, whereas the prior density does not. Therefore, as the sample size

increases, the absolute value of L(θ;D) gets larger while log(p(θ)) stays fixed (for a fixed value of
21



www.manaraa.com

θ). The sum L(θ;D) + log(p(θ)), as a result, becomes more heavily influenced by L(θ;D) as the

sample size increases. As the sample size increases, the chosen prior has less influence [64]. Hence

inference converges regardless of chosen prior, so long as the areas with non-zero probabilities are

the same [65, 66].

1.4.3 Unsupervised Learning and Cluster Analysis

Clustering or Cluster Analysis is a process of finding similarities between a set of physical

or abstract objects according to characteristics found in the data and grouping them into classes

of similar objects called clusters [67]. In the absence of a class label, clustering is also called

unsupervised learning, as opposed to supervised learning that includes classification and regres-

sion [68,69]. Thus, clustering entails learning from observations rather than from annotated exam-

ples. Clustering is not associated with a particular algorithm but rather several different approaches

to data modeling. Among the most popular methods found in the literature are, graph clustering

models [70] in which datasets are organized based on the edge structure of observations, distri-

bution models [71] which model the generative distributions of the data via the use of statistics

and probabilities, centroid models [72] which represent groups as mean vectors, and connectivity

models [73] which focus on the distance connectivity. Since clustering does not require the use of

annotated datasets, it has become a powerful tool in numerous applications across many differerent

fields [67].

1.4.3.1 Finite Mixture Modeling

An alternative approach to many traditional heuristic clustering methods is model-based clus-

tering, in which, data is considered as coming from a mixture of probability distributions, each of

which represents a different cluster [74,75]. In other words, it is assumed that the data is generated

by a mixture of distributions in which each component represents a different cluster. In the family

of model-based clustering algorithms, one uses certain models for clusters and tries to optimize the

fit between the data and the models. One such modeling approach called finite mixture modeling

provides a convenient yet formal framework for model-based clustering, in which, a mixture of

parametric distributions is used to model data, estimating both the parameters for the various dis-
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tributions and the probabilities of cluster membership for a given observation. Following inference

of the model and its parameters, the estimated mixing probabilities are treated as the prior prob-

ablity of an observation originating from a specific mixing distribution. Bayes rule is then used

to allocate observations to clusters in accordance with their posterior probabilities, such that each

observation is assigned to the cluster having the highest posterior probability (maximum posterior

probability) of being where the observation originated. A benefit of using a model-based approach

to clustering is that it enables assessment of the probabilities of events and simulation of draws

from an unknown distribution within the framework of standard statistical theory.

1.4.3.2 Limitaࢢons of Clustering

In finite mixture models and other popular clustering methodologies, where the number of clus-

ters k existing in the data is known a priori, a fundamental question that arises is how to perform

model selection, i.e., how to determine the appropriate number of components for a given model.

Many of these methods, from K-means clustering to Gaussian Mixture models, require specifica-

tion of this parameter k prior to analysis. In addition, the results generated during the application

of these methods are heavily influenced by the k value selected. Nevertheless, k is rarely known

in real-world applications a priori and may change over time as more data becomes available [76].

While several algorithms such as X-means [77], Hierarchical clustering [73], and DBCSAN

[78] have been developed to overcome this problem via estimation, outright avoidance of the prob-

lem, or not requiring direct specification, respectively, most of these techniques rely on heuristics

and do not use a probabilistic framework. One alternative approach, however, allows for the dy-

namic estimation of k as well as its adaptation over time in the presence of new data. This ap-

proach, known as Bayesian Nonparametric mixture modeling, has been applied to a large number

of different problems in machine learning and statistics and addresses many of the aforementioned

limitations of clustering and unsupervised learning within a probabilistic framework [79, 80].

1.4.4 Bayesian Nonparametric Modeling

The probabilistic approach to statistical modeling provides an intuitive framework for express-

ing various aspects of uncertainty in a model [79]. In this approach, prior knowledge about the
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model or model parameters is incorporated with the goal of inferring a posterior distribution over

unobserved variables. Among the most common approaches, are Bayesian parametric formula-

tions in which models define prior and posterior distributions on a single fixed parameter space

and Bayesian nonparametric models in which the dimension of the parameter space is allowed to

grow with data size. This ability to grow the model structure is possible with the use of an infinite-

dimensional parameter space and the invocation of only a finite subset of the avaliable parameters

on any given finite data set. More formally, Bayesian nonparametric models place a prior over the

(infinite dimensional) space of distributions on an arbitrary space. When combined with data, the

resulting posteriors give a distribution on structures that can grow with new observations. Bayesian

nonparametric priors such as the Dirichlet process [81] and its extensions, e.g. Pitman-Yor Pro-

cesses [82], allow for the creation of flexible probabilistic models with an unbounded number of

parameters. These models are appropriate when the latent dimensionality of the data is unknown

or may grow with sample size. Both distributions have found a number of applications in text and

language modeling [83–85].

Bayesian Nonparametric models are relevant today because the kinds of latent structures and

datasets encountered are becoming increasingly more complex. The flexiblity in model selection

and adaptation offered by these models provides a solution to the problem of underfitting and over-

fitting in machine learning [79]. Specifically, unlike classical model selection where the number

of components is fixed, the predictive distribution of Bayesian nonparametric models allows for a

subsequent data point (i.e. the data point to be predicted) to exhibit a previously unseen component

of the latent parameter space. In addition, the adaptive nature of Bayesian nonparametric methods

allows for the modeling of uncertainty over complicated latent structures with hierarchical settings,

such that they can grow and change in the predictive distribution. Lastly, by casting model selec-

tion and parameter estimation in a single model, Bayesian nonparametric models only need a single

posterior inference algorithm to search and learn the best model [86].

1.4.4.1 Dirichlet Process

Imagine aDirichlet—a random distribution over k elements—but for a distribution on any space

(including continuous spaces). This is a Dirichlet process. The Dirichlet process (DP ), developed
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formally in [61], is a stochastic process whose realizations are probability distributions.

DEFINITION 1.13 (Dirichlet Process) Let (X,Ω) be a measurable space and µ be a measure on this

space. A random probability measure P µ on (X,Ω) is a Dirichlet process with parameter µ un-

der the following condition: given a measurable partition of Ω, {B1, B2, ..., BN}, where each

µ(Bk) > 0 ∀k, the joint distribution of random probabilities (P µ(B1), P µ(B2), ..., P µ(BN)) is dis-

tributed according to the standard Dirichlet distribution Dir(µ(B1), µ(B2), ..., µ(BN)) [87]. The

parameter µ can be interpreted as the product, µ = αH , where α is a real number > 0 referred to

as the concentration parameter and H the base probability measure of the Dirichlet process.

It can be shown that G ∼ DP (α,H) is a probability measure drawn from a Dirichlet process,

(G(B1), G(B2)..., G(BN))|α,H ∼ Dir(αH(B1), αH(B2), ..., αH(BN)). (1.13)

From this definition it can be shown how α controls the variance of G about its mean H , via

E[G(B)] = H(B), V [G(B)] = H(B)(1−H(B))/(α + 1) (1.14)

Since the random probability measure G can be thought of as a probability distribution over Ω,

which can be sampled to yield independent and identically distributed samples θ1, ..., θm ∼ G, it

can be shown that a draw, G, is discrete with probability 1, and has the following form:

G =
∞∑

i=1
πiδθi

, (1.15)

where the weights πi satisfy
∑∞

i=1 πi = 1, δx is a Kronecker delta point mass concentrated at x, and

θi ∼ H are the locations of the point masses.

This discrete nature of random probability measures drawn from a Dirichlet process is made

explicit by [88] in the stick-breaking construction. The stick-breaking construction is an iterative

procedure for sampling the weights πi of (1.15). This procedure is based on the analogy of taking

a stick of unit length, and repeatedly breaking off Beta-distributed pieces, and assigning them to

locations θi in Ω. A draw from a Dirichlet process can be sampled by alternately sampling θi from
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H , and calculating πi by sampling βi, as given by:

πi = βi

i−1∏
j=1

(1− βj) (1.16)

βi ∼ Beta(1, α)

It is important to note that the sequence of random variables β1, β2, ... constructed by (1.16) satisfy∑∞
i=1 πi = 1 from (1.15) with probability one.

Another perspective on the construction of the Dirichlet Process is described by [81,87], where

the discrete nature of observations from the Dirichlet Process allow observations from the distribu-

tions/measures drawn from a Dirichlet process to be viewed as countably infinite mixtures. Given

a model that first draws a probability measure G from a Dirichlet process with parameter µ = αH

and then draws i.i.d observations θ1, θ2 from G, one can analytically integrate out G to obtain the

following conditional distributions from the observations θm:

θm|θ1, ..., θm−1 ∼
α

α +m− 1
H + 1

α +m− 1

m−1∑
i=1

δθi
(1.17)

This second perspective on the Dirichlet process is provided by the Polya urn scheme, where

draws from the Dirichlet process exhibit a clustering property [89]. In this analogy we assume a

non-transparent urn that contains colored balls fromwhich we draw balls randomly. Three assump-

tions are made:

1) H is a distribution over colors

2) each θm represents a distinct color of ball placed in the urn

3) the process begins with an empty urn.

The algorithm for this scheme is as follows:

• With probability proportional to α, draw θm ∼ H and add a ball of this color into the urn.

• With probability proportional to m − 1, draw a random ball from the urn, observe its color,

place it back into the urn and add an additonal ball of the same color into the urn.

We can thus characterize them+1th observation as being drawn with probability proportional to α
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fromH , and equal to a previously drawn observation θi with probability proportional to
∑m

j=1 δθi=θj
.

This expression shows that there is a positive probability of different observations having the same

exact value θk as one of the previous observations and therefore a positive reinforcement effect.

1.4.4.2 Dirichlet Process Mixture Modeling

The use of Dirichlet Processes in the construction of mixture models with infinite components

can be thought of as taking the limit of the finite mixture model for i to infinity. Such a model takes

on the following form:

G ∼ DP (α,H) (1.18)

θi|G ∼ G (1.19)

xi|θi ∼ f(θi) (1.20)

As previously mentioned, the hyperparameters of the Dirichlet Process, DP (α,H), correspond to

the base probability measureH and the concentration parameter α, whereH is often the conjugate

prior to the generative distribution f and α is a scalar value indicating the strength of belief inH . It

should also be noted that α affects the number of clusters (components) generated, such that larger

values of α result in more clusters, whereas smaller values result in less. G is defined by (1.15)

and is sampled from the Dirichlet process. Each θi denotes a parameter vector sampled from G

containing the parameters of a given cluster. The generative distribution f is parameterized by θi

and used to generate the observations (datapoints) xi. From these generative distributions we can

define a mixture distribution of the countable infinite mixture fx(·) = ∑∞
i=1 πif(·|δθi

) with mixing

proportions πi andmixing clusters f(·|δθi
). In addition, these cluster parameters θi can be viewed as

latent variables on xi indicating the orignating cluster for xi and thereby the identity/configuration

of said cluster. Thus, for every xi, a θi is drawn from G, such that with every draw, G will change

based on previous observations. As was shown in the Poly Urn scheme (1.17),G can be integrated

out such that future draws of θi only depend onH . However, estimating θi using this formula is not

always tractable since implementations must often enumerate through an exponentially increasing

number of i clusters.
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Given the aforementioned definitions and observations, it is desirable to estimate the posterior

of the Dirichlet Process given the samples θi. Using Bayes rule and the conjugacy between the

Dirchlet and Multnomial distributions [90], the posterior Dirichlet process can be described by:

G ∼ DP (α,H) and θ|G ∼ G⇔ θ ∼ H and G|θ ∼ DP (α + 1, αH + δθ

α + 1
) (1.21)

Thus, to perform clustering on data without specifying a fixed number of clusters in advance, the

Dirichlet process can be used as a prior on the mixing probabilities of a mixture model [90, 91].

1.4.4.3 Chinese Restaurant Process Representaࢢon

The Dirichlet Process mixture model defined in Section 1.4.4.2 is mathematically sound, nev-

ertheless it has a major drawback: for every new xi that is observed, a new θi must be sampled,

taking into account the previous values of θ. In many applications, sampling these parameters can

be a difficult and computationally expensive task. Using a somewhat different, yet computationally

tractable, metaphor of the Polya urn scheme, the Dirichlet Process can be alternatively represented

by the Chinese Restaurant Process (CRP) [90]. The scheme uses the following analogy: Con-

sider a Chinese restaurant with an unbounded number of tables. An observation, ϕi, corresponds

to a customer entering the restaurant, and the distinct values θ∗
k correspond to the tables at which

customers can sit.

ϕi|ϕ1, ..., ϕi−1 =


θ∗

k with probability c
θ∗

k
i−1

i−1+α

new draw from H with probability α
i−1+α

Using the above conditional probability distribution, where α is the concentration parameter of

the Dirichlet process and cθ∗
k

i−1 is the total number of customers sitting at a table with the distinct

value θ∗
k, the Chinese Restaurant Process can be considered an induced distribution over partitions.

Assuming an intially empty restaurant, the Chinese Restaurant Process algorithm can be expressed

as follows:

• With probability proportional to cθ∗
k

i−1, the ith customer sits at the table indexed by θ∗
k, in which

case ϕi = θ∗
k.
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• With probability proportional to α, the ith customer sits at a new table, in which case ϕi ∼ H .

The result of the Chinese Restaurant Process is a distribution on the space of partitions of the

positive integers. Thus, in this alternative Dirichlet Process mixturemodel representation, the latent

variables ϕi of cluster assignments can be modeled. This way instead of using θi to denote both

the cluster parameters and the cluster assignments, the latent variable will indicate the cluster id

which can be subsequently used to assign the cluster parameters. As a result, it no longer becomes

necessary to sample a θ for each new observation. Instead the cluster assignment is obtained by

sampling ϕi from the Chinese Restaurant Process. With this scheme a new θ is sampled only when

a new cluster needs to be created.

1.4.4.4 Pitman-Yor Process

The Pitman-Yor process (PY P ) is a two-parameter extension of the Dirichlet process, param-

eterized by a discount parameter 0 ≤ d ≤ 1 , a concentration parameter α > −d , and the base

probability measure H [82, 92] . We can observe the behavior of a draw by considering the stick-

breaking construction for the Pitman-Yor process:

πk = βk

k−1∏
j=1

(1− βj) for k = 1, 2, ...∞ (1.22)

βk ∼ Beta(1− d, α + kd), for k = 1, 2, ...∞

As d increases, the rate of decay of the ordered atom sizes will decrease. When d = 0, we recover

the stick-breaking construction of the Dirichlet process given in (1.16.) Given G is a Pitman-Yor

process with parameters α, d and base measure H , we can denote the mixture model as:

G ∼ PY P (α, d,H)

θi|G ∼ G

xi|θi ∼ f(θi)
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IfH is a smooth distribution and θ1, θ2, ... are i.i.d draws fromG, the distribution of θi conditioned

on θ1, ..., θi−1 andGmarginalized out, can be generalized to follow the Polya urn scheme as follows:

θi|θ1, ..., θi−1, d, α,H ∼
K∑

t=1

nt − d
α+ i− 1

δθ∗
t

+ α +Kd

α + i− 1
H, (1.23)

where θ∗
t denotes the tth distinct value among θ1, ..., θi−1, K the total number of distinct values,

and nt the total number of recorded observations of the value θ∗
t .

1.4.4.5 Hierarchical Pitman-Yor Process

We can also construct a hierarchy of Pitman-Yor processes, known as theHierarchical Pitman-

Yor Process (HPYP), that allows us to jointly cluster multiple related groups of data. Each group is

associated with a Pitman-Yor process-distributed random measure. These group-specific Pitman-

Yor processes are coupled via a shared, PY P -distributed base measure G0. For J groups, each

containing nj data points, the HPY P is defined as follows:

G0 ∼ PY P (α∗, d∗, H) (1.24)

Gj|G0 ∼ PY P (α0, d0, G0), j = 1, ..., J

θji|Gj ∼ Gj, i = 1, ..., nj

xji|θji ∼ f(θji)

This hierarchical construction generalizes to a multiple-level hierarchy (Figure 1.3).

1.4.4.6 Chinese Restaurant Franchise Representaࢢon of the Hierarchical Pitman-Yor Process

Similar to the Dirichlet Process, the Pitman-Yor Process and Hierarchical Pitman-Yor Process

can be better understood via their Chinese Restaurant Process and Chinese Restaurant Franchise

(CRF) interpretations, respectively [80, 93]. In the Pitman-Yor process variation of the Chinese

Restaurant process, the first customer θ1 sits at the first available table θ∗
1 while each of the subse-
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FIGURE 1.3 Plate notation for Hierarchical Pitman-Yor Process Model

quent customers θi either sit at the kth occupied table θ∗
k with probability proportional to (ck − d)

where ck is the number of customers already sitting at that table, or sit at a new unoccupied table

θ∗
K+1 with probability proportional to (dK +α) whereK is the current number of occupied tables.

In the Chinese Restaurant Franchise representation of the Hierarchical Pitman-Yor process, the ran-

dom measure labeled by the random variableGj , corresponds to the jth restaurant in the franchise,

draws θji ∼ Gj correspond to customers, tables in restaurant j correspond to draws θ∗
jt ∼ G0, and

dishes correspond to draws θ∗∗
k ∼ H . In this analogy, customer seating is done independently in

the restaurants and coupling among restaurants is achieved via the use of a single franchise-wide

menu H . The first customer to sit at a table in a restaurant chooses a dish from the menu and all

subsequent customers who sit at that table are served that dish. Dishes are chosen with probability

proportional to the number of tables in the entire franchise which have already served that dish.

Thus if the ith customer in the jth restaurant, θji, sits at the tth table, tji, which serves dish kjt, let

θji = θ∗
jtji

= θ∗∗
kjtji

Let njtk be the number of customers in restaurant j seated at table t and eating dish k, mjk

be the number of tables in restaurant j serving dish k, and K be the number of dishes served

throughout the franchise. The conditional distributions given by the Chinese Restaurant Franchise
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for the Hierarchical Pitman-Yor process are described by a Polya urn scheme as follows:

θji|θj1, ..., θj,i−1, α, d,G0 ∼
mj.∑
t=1

njt. − d
α + nj..

δθ∗
jt

+ α +mj.d

α + nj..

G0, (1.25)

where dots are used to denote marginal counts. A draw from this mixture can be obtained by

drawing from the terms on the right side with probabilities given by the corresponding mixing

proportions. If a term in the first summation is chosen then the customer sits at an already occupied

table: njt. is incremented, θji is set equal to θ∗
jt and tji = t for the chosen t. If the second term

is chosen then the customer sits at a new table: mj. is incremented by one, njmj.
is set equal to

1, θ∗
jmj.
∼ G0 is drawn, and the variables are set s.t θji = θ∗

jmj.
and tji = mj.. In Chapter 3, the

predictive/posterior distribution for each distinct value (or pattern-primitive) given a sequence of

observations is derived in terms of the Chinese Restaurant Franchise interpretation, using customer

counts c and table counts t.

1.5 Algebraic Topology

The combinatorial nature of many complex patterns makes it is necessary to utilize a modeling

formalism that does not adopt a strict order or parametric form, yet can be used for analyzing

massive amounts of sampled data [94–96]. Acquiring knowledge about a sampled space from point

data remains a key problem in many areas of science and engineering [94, 95, 97]. The sampled

space could be a hidden manifold sitting in some high dimension, or could be a compact subset

of some Euclidean space. The principle of algebraic topology is to attach algebraic invariants to

topological spaces in order to classify them up to homeomorphism.

DEFINITION 1.14 (Topological Space) A topological space is a set X and a set τ of subsets of X

satisfying the axioms:

AXIOM 1. ∅ and X are in τ ,

AXIOM 2. If the sets U1, U2, ..., Un are in τ , then so is ∩n
i=1Ui,

AXIOM 3. If Ui, i ∈ I are in τ , then so is ∪i∈IUi.
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A map f between topological spaces is said to be continuous if the inverse image of every

open set is an open set. A homeomorphism is a continuous bijection whose inverse is also con-

tinuous. Two topological spaces (X, τX), (Y, τY ) are said to be homeomorphic if there exists a

homeomorphism f : X → Y . From the viewpoint of topology, homeomorphic spaces are essen-

tially identical. Properties of a topological space which are preserved up to homeomorphisms are

said to be topological invariants. One can consequently study the latent properties of a discrete

algebraic structure instead of studying a continuous domain directly, which would be hard to han-

dle algorithmically. Topological information such as the rank of the homology groups, or their

persistent behavior can divulge important features of these hidden spaces [94].

1.5.1 Simpicial Complexes

In algebraic topology, one studies simplicial complexes. A simplicial complex is a combi-

natorial structure that consists of a collection of simplices, which are elementary building blocks

like vertices, edges, triangles, tetrahedral and higher-dimensional equivalents glued together along

common faces. Simplicial complexes are a generalization of graphs in the sense that they allow

higher order adjacency, i.e. more than two vertices being connected by a simplex. In this section we

introduce and familiarize readers with the concepts and terminologies used in subsequent chapters.

DEFINITION 1.15 (Abstract Simplicial Complex ) An abstract simplicial complex K is a pair

K = (V, S) where V is a finite set whose elements are called the vertices of K and S is a set

of non-empty subsets of V that is required to satisfy the following two conditions:

1) v ∈ V ⇒ {v} ∈ K

2) σ ∈ K, τ ⊆ σ ⇒ τ ∈ K

Each element σ ∈ K is called a simplex or a face ofK and, if σ ∈ K has precisely d+ 1 elements

d ≥ −1, σ is called a d-simplex and the dimension of σ is d. The dimension of the simplicial

complexK is the largest dimension d of any simplex, dim(K) = max{dim(σ)|σ ∈ K} . The set

of all the d-simplices ofK is denoted by K(d) .

DEFINITION 1.16 (Simplex) A simplex σ is a subset of the vertices from the vertex set,

σ = {v0, ..., vd} ⊆ V , and we say that v0, ..., vd are the vertices of σ.
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DEFINITION 1.17 (Face) A face of a simplex σ = {v0, ..., vd} is a simplex whose vertices form a

subset of {v0, ..., vd}.

DEFINITION 1.18 (Ordered Abstract Simplicial Complex) An ordered (oriented) abstract simplicial

complex K is an abstract simplicial complex in which the set V of vertices is ordered, such that

[vi0 , ..., vid
] may stand for a simplex iff vic < vie whenever c < e.

An example of an ordered simplicial complex is the ordered q-simplex itself. The ordered

q-simplex is simply a q-dimensional simplex with ordered vertices. It is an ordered simplicial

complex when considered together with its faces. If we denote the ordered q-simplex [v0, ..., vq],

then each k-face has the form [vi0 , ..., vik
], where v0 ≤ vi0 ≤ vi1 ≤ ... ≤ vik

≤ vq.

DEFINITION 1.19 (Proper Face) A proper face is a face that is different from σ.

DEFINITION 1.20 (Boundary of σ) Boundary of σ is the set of proper faces of maximal dimension

dim(σ)− 1, s.t

∂(σ) = ∂{v0, ..., vd} = {{v0, ..., v̂i, ..., vd} : 0 ≤ i ≤ d}

where the symbol v̂i means that vi is removed from the set.

We can define the boundary operator ∂d for a simplex σ as follows:

∂dσ =
d∑

i=0
(−1)i[v0, ..., v̂i, ..., vd],

where the signs (-), account for orientation.

DEFINITION 1.21 (Facets of σ) Facets of σ are faces of the boundary of a simplex.

DEFINITION 1.22 (Coface of σ) Coface of σ is a simplex τ ∈ K admitting σ as a face.

DEFINITION 1.23 (Dimension of the Simplicial Complex) Dimension of the simplicial complex is the

maximum dimension of its simplices.

For each non-negative integer q, let ∆q(K) be the additive group consisting of all formal

sums of the form n1(v1
0,v1

1,v1
2, ...,v1

q) + n2(v2
0,v2

1,v2
2, ...,v2

q) + ...+ nj(vj
0,v

j
1,v

j
2, ...,vj

q), where

n1, n2, ..., nj are integers and v∗
0,v∗

1,v∗
2, ...,v∗

q are (not necessarily distinct) vertices ofK that span

a simplex of K for ∗ = 1, 2, .., s. Thus, ∆q(K) can be regarded as the free abelian group gener-
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ated by the set of all (q + 1)-tuples of the form (v0,v1,v2, ...,vq) , where v0,v1,v2, ...,vq span a

simplex of K.

DEFINITION 1.24 (Subcomplex of a Simplicial Complex) A subcomplex of the simplicial complexK

is a simplicial complex L, such that every face of L belongs to K, L ⊂ K. A subcomplex that

consists of all subsets of a single face of K is referred to as a simplex ofK.

DEFINITION 1.25 (n-Skeleton of the Simplicial Complex K ) Given a simplicial complex K and a

non-negative integer n, the n-skeleton ofK, denotedK(n) is the set of simplices inK of dimension

no greater than n. The n-skeleton of K is itself a simplicial complex and therefore a subcomplex

of K.

DEFINITION 1.26 (qth Chain Group of the Simplical ComplexK) The qth chain group of the simplicial

complex K is the quotient group ∆q(K)/∆0
q(K) , where ∆0

q(K) is the subgroup of ∆q(K) gener-

ated by elements of the form (v0,v1,v2, ...,vq) , where v0,v1,v2, ...,vq are not all distinct, and by

elements of the form (vr(0),vr(1),vr(2), ...,vr(q)) where r is some permutation of {0, 1, 2, ..., q}.

DEFINITION 1.27 (q-Simplex Chain) q-simplex chain (or q-simplicial chain) is an element of the

chain groupCq(K) , composed of a final formal sum of q-dimensional simplices fromK(q), written

as c = ∑
aiσi .

Under Z2 coefficients (ai = 0 or 1), a q− chain is a collection of q−simplices. Furthermore,

we can define a binary operation +, over the set of q− chains for a simplicial complex as follows:

c0 + c1 =
∑

aiσi +
∑

biσi =
∑

(ai + bimod2)σi

Under mod2 addition, the orientation of simplices does not matter. Hence the boundary of a

q − simplex can be written as the addition of its (q − 1)-faces, i.e., ∂[v0v1] = [v0] + [v1]. Thus,

for a given q − chain, c = ∑
aiσi, the boundary is the sum of the boundaries of its simplices,

∂qc = ∑
ai∂qσi. Since the boundary operator commutes with addition ∂q(c0 + c1) = ∂qc0 + ∂qc1,

the map between chain groups, ∂q : Cq → Cq−1, is a homomorphism.

Lemma 1.

Let K be a simplicial complex and k be a commutative ring. The chain complex of K with co-
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efficients in k, denoted C.(K; k) has Cq(K; k) as its qth module and boundary operators defined

by:

Cq(K; k) ∋ [v0, v1, ..., vq]
∂q7−→

q∑
i=0

(−1)i[v0, ..., v̂i, ..., vq] ∈ Cq−1(K; k)

The chain complex can be expressed as the sequence of chain groups connected by boundary

homomorphisms.

...
∂q+2−−→ Cq+1

∂q+1−−→ Cq
∂q−→ Cq−1

∂q−2−−→ ...

1.5.2 Homology

The fundamental group is a remarkably powerful tool for capturing the global structure and

characterizing holes in topological spaces [98]. Unfortunately, it is difficult to determine whether

two groups are isomorphic or not. Homology theory is designed to address this problem by build-

ing a sequence of abelian groups Hq(X), called homology groups, from a topological space . In

addition to providing a language for characterizing holes of topological spaces, homology groups

can be extended to higher dimensions and computed efficiently using routines adopted from linear

algebra [99].

1.5.2.1 Simplicial Cycles and Boundaries

To define homology groups we must focus on two types of simplicial chains, cycles and bound-

aries.

DEFINITION 1.28 (q-cycle) A q-cycle c is a q-chain whose boundary is zero, denoted ∂qc = 0.

DEFINITION 1.29 (kernel of ∂q) The kernel of ∂q, denoted Zq = ker∂q, is the set of all q-chains

whose boundaries go to zero under the qth boundary homomorphism, where Zq represents the

subgroup formed by the set of all q-cycles denoted Zq ⊆ Cq. Since the chain groups are abelian,

their cycle subgroups are abelian as well.

The kernel of ∂q can be expressed as follows:

ker∂q = c ∈ Cq|∂q(c) = eCq−1 ,
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where eCq−1 denotes the identity element in Cq−1.

DEFINITION 1.30 (q-boundary) A q-boundary c is a q-chain that is the boundary of a (q+ 1)-chain,

denoted c = ∂q+1d, where d ∈ Cq+1.

DEFINITION 1.31 (image of ∂q+1) The image of ∂q+1, denoted Bq = img∂q+1, is the set of all

q-boundaries under the q + 1th boundary homorphism forming the group denoted Bq ⊆ Cq, where

Bq is a subgroup of Cq. Since the chain groups are abelian, so are their boundary subgroups.

The image of ∂q+1 can be expressed as follows:

img∂q+1 = {cq ∈ Cq|∃cq+1∈Cq+1∂q+1(cq+1) = cq}

The idea of homology derives from a chain complex of simplicial chain groups together with

some map ∂ between chain groups Cq → Cq−1. The fundamental lemma of homology intuitively

states the map ∂ has the the property that ∂∂c = 0 for all chains c.

Lemma 2. ∂q∂q+1d = 0 for every dimension-index q and q + 1-simplicial chain d

Proof:

∂q+1(d) =
∑
i=0

(−1)id|[v0, ..., v̂i, ..., vq+1] (1.26)

∂q∂q+1(d) =
∑
j<i

(−1)i(−1)jd|[v0, ..., v̂j, ..., v̂i, ..., vq+1] +
∑
j>i

(−1)i(−1)j−1d|[v0, ..., v̂i, v̂j, ..., vp+1]

Since the boundaries form subgroups of the cycle groups, the qth homology group Hq(X) for

a chain complex can be defined as the quotient group denoted as the qth cycle group modulo of the

qth boundary group:

Hq = Zq/Bq = ker∂q/Im∂q+1 (1.27)

Each element is in the form a coset, obtained by adding each q-boundary to a given q-cycle, c+Bq

where c ∈ Zq. Any two q-cycles,c1, c2, are said to be homologous c1 ∼ c2 if they are elements of

the same coset. The homology group is the collection of all such cosets.
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A generating set H of a group G is a set of elements such that any element in G can be repre-

sented as a combination of elements inH and their inverse. If the groupG is free, then there exists

a basis H such that any element in G can be uniquely represented as a combination of elements in

H and their inverse. The basis of a free abelian group G is also the smallest generating set for G,

where the rank of G, denoted rank(G) represents the cardinality of any basis of G. Let card(G)

denote the cardinality, or order, of the group G. Given a simplicial complex K, where the set of

q-simplices form a basis for the group Cq, it can be shown that rank(G) = nq, where nq is the

number of q-simpices inK. Thus, under modulo2 addition, card(Cq) = 2nq . The number of cycles

in a coset is the cardinality of Bq, hence the number of cosets in the homology group is computed

as follows:

card(Hq) = card(Zq)/card(Bq). (1.28)

Equivalently the rank of Hq, also known as the qth Betti number and denoted βq , is computed as

the difference:

βq = rankHq = rankZq − rankBq (1.29)

1.5.3 Gröbner Bases

The method of Gröbner bases has become one of the most important techniques in providing

an exact solution to nonlinear problems in multivariate polynomial ideal theory, computational

algebra, elimination theory, and in solving systems of algberaic equations [99–101]. Our brief

treatment of algebraic geometry follows [98, 102]. Let R = k[x1...xr] denote the polynomial ring

in r indeterminates over a field k and xa as the shorthand for the monomial xa1
1 ...x

an
n . Unless

otherwise stated, we will call a module a R-module and vector space a k-vector space. Let RN be

a finitely generated free module with canonical basis e1, ..., eN . A monomial in RN is an element

of the form m = xaei for some i, and a term is an element of the form cxaei for c ∈ k. Each

element f ∈ RN is a linear combination of monomials xuei. The monomial submodule generated

by elements f1, ..., ft in RN will be denoted by < f1, ..., ft >. A monomial order on RN is a total

38



www.manaraa.com

order > on the monomials of RN . Given a monomial order > on RN , and f ∈ RN , we will define

the leading monomial LM(f) and leading coefficient LC(f) as the greatest monomial of f and its

leading coefficient, respectively. If M is a finitely generated submodule of RN , then LM(M) is

the submodule of RN generated by the leading monomials of the elements of M . A finite set of

generators {f1, ..., ft} for a moduleM ⊂ RN is a Gröbner basis ofM if

LM(< f1, ..., ft >) =< LM(f1), ..., LM(ft) >

It follows that a Gröbner basis for an ideal I in R is a set of generators for I with an additional

property that allows for an efficient solution to the ideal membership problem. With the use of

Gröbner bases, many intractable problems involving ideals in polynomials rings can be reduced to

easy computations expressed in terms of monomial ideals. Computing Gröbner bases and finding

primary decomposition of polynomial ideals are two closely related topics that are fundamental in

computational algebraic geometry [99]. A Gröbner basis of a moduleM ⊂ RN can be computed

from any finite set of generators using the Buchberger algorithm [103].

1.6 Sequence Learning

The aim in sequence learning is to build a model with which we can predict the next element

in a data sequence, given an already observed element of the same sequence. Time-series data is

a particular manifestation of sequence data that further extends the challenges already associated

with sequence learning [104]. If a random variable X is indexed to time, usually denoted by t,

the observations {XT , t ∈ T} are called a time series, where T is a time index set (for example,

T = Z, the integer set). In many statistical applications, it can be assumed that data is independent

and identically distributed (iid) [62, 105], i.e., given a sequence of data D = {x1, x2, x3, ..., xN}

sampled from the random variableX , the likelihood can be written as the product of the individual

samples

p(D|M) =
N∏

n=1
p(xn). (1.30)
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However, due to the temporally correlated nature of observations in time-series data the iid assump-

tion becomes unrealistic [37]. Instead, causal dependence among observations is often assumed,

such that

p(D|M) = p(xN , xN−1, .., x2, x1) (1.31)

= p(xN |xN−1, .., x2, x1)p(xN−1|xN−2, .., x2, x1)...p(x2|x1)p(x1) (1.32)

= p(x1)
N∏

n=2
p(xn|x1:n−1) (1.33)

In order to make inference tractable, stochastic models called Markov models utilizing weaker

assumptions about the sequence data can be constructed for the purpose of predictive modeling

[62, 105]. One such stochastic model is known as the Markov process.

DEFINITION 1.32 A stochastic process {Xt}t∈T with state space S on a probability space (Ω, F, P )

is a Markov process, if for any set of n + 1 values t1 < t2 < t3, ... < tn < tn+1,, ti ∈ T ,

i = 1, 2, 3, ..., n+1, and any set of states {x1, x2, ..., xn+1} ⊂ S, the conditional probability equals

P (X(tn+1) = xn+1|X(t1) = x1, X(t2) = x2, X(t3) = x3, ..., X(tn) = xn)

=P (X(tn+1) = xn+1|X(tn) = xn)
(1.34)

In general, Markov processes can be classified into one of four types based on a system’s state

space and time parameter index: discrete-time Markov processes, discrete-time Markov chains,

continuous-time Markov processes, and continuous-time Markov chains. Given the discrete time

index set T, the discrete-time Markov process can be used to define an approximation of the data

sequence:

p(xn|xn−1, ..., x2, x1) ≈ p(xn|xn−1). (1.35)

This approximation is called a first-order discrete-timeMarkov process because, given the previous

observation xn−1, the observation xn is conditionally independent of all previous observations. As

a result, (1.32) can be written as the product of conditional probabilities on the previous observation

P (D|M) = p(x1)
N∏

n=2
p(xn|xn−1). (1.36)

40



www.manaraa.com

To capture longer-range temporal dependencies, higher order Markov models can be con-

structed, such that, an observation xn is independent of all other previous observations, given the

previousM observations:

P (D|M) = p(xn|xn−1, ..., x2, x1) = p(xn|xn−1, ..., xn−M) (1.37)

In cases where the observed variable X is discretized, such that the sequence of observa-

tions D = {x1, x2, x3, ..., xN} can be described using a discrete data sequence with each vari-

able xi taking on one of K states {s1, s2, ..., sK} , a discrete-time Markov chain with finite space

S = {s1, s2, ..., sK} can be used instead1.

DEFINITION 1.33 A Markov process {Xt}t∈T with state space S on a probability space (Ω, F, P )

is called aMarkov chain, if the state space S is finite or countable.

Consequently, the likelihood of this discretized data sequence can be written:

p(D|M) = p(x1 = si)
N∏

n=2
p(xn = sj|xn−1 = si). (1.38)

Each conditional probability p(xn = sj|xn−1 = si) is referred to as a transition probability and

describes the probability of being in state sj at time n+ 1, given that the state at time n is si:

πi,j = p(xn = sj|xn−1 = si). (1.39)

In many cases it is assumed that the transition probabilities are homogeneous (i.e do not change

over time), thus

p(xn = sj|xn−1 = si) = p(xn+T = sj|xn−1+T = si), (1.40)

where T ≥ 1. The probabilities πi,j are usually presented in the form of a matrix π called the

transition matrix:

π = (πi,j)K,K
i=1,j=1 (1.41)

1When the observed variable is discretized via quantization, each state si corresponds to one of K computed quan-
tization levels.
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π =




π1,1 π1,2 . . . π1,K

π2,1 π2,2 . . . π2,K

...
... . . . ...

πK,1 πK,2 . . . πK,K

Here, each row i of the transition matrix π represents the conditional probability distribution

of Xn given that state Xn−1 = si. In addition, the transition matrix assumes that πi,j ≥ 0 and∑K
j=1 πi,j = 1, for all i, j = 1, ..., K.

In addition toMarkov Processes, the HiddenMarkovModel (HMM) is another popular Markov

model that is commonly used to tractably model time-series and sequence data [106]. The standard

HMMmodel utilizes a state space model in which each observation xi has a corresponding discrete

latent (unobserved) variable called the hidden state zi that it is associated with. These hidden

states z1, z2, z3, ..., zn emit the sequence of observations {x1, x2, x3, ..., xn} based on the conditional

distributions of the form p(x|z). Similar to a Markov chain modeling a discrete data sequence,

an HMM is defined by the number of states K, a K · K transition probability matrix π, and a

parameterized distribution2 F (·) describing the conditional probabilities p(xi|zi). The generative

model describing an HMM is as follows:

zi ∼ πzi−1 (1.42)

xi ∼ F (θzi
), (1.43)

where θzi
is a unique set of parameters associated with zi. In general, an HMM can be used to

describe a data sequence via a mixture model in which the indices of mixture components have a

temporal dependency that can modeled as a first-order Markov chain. Unfortunately in standard

Hidden Markov models, in which an observation xi is considered conditionally independent of any

other observation xj , given the hidden state zi, the possibility that both the observations and the

hidden states possess temporal dependencies is ignored [106, 107]. Although many extensions to
2Although each hidden state z can have its own corresponding parameterized distribution Fz(·), in many cases

it is more common for all hidden state emission distributions to share a common form, e.g. Gaussian distribution.
Nevertheless, a unique set of distribution parameters θz is associated with each hidden state z.
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the standard HMM method exist and address the aforementioned issue in addition to others, these

methods still require considerable domain expertise in order to restrict possible model architectures

[106]. In addition to this problem of model selection-inferring the optimal model size (number of

hidden states)-HMM training typically requires very large training samples [107].

Learning from sequence data is critical when trying to model and predict the dynamics of bio-

logical phenomena [2, 108]. Since the function and behavior of many complex biological systems

and processes may evolve over time, it is also necessary for predictive models to be continuously

updated as data becomes available. This process of continuous model adaptation based on a con-

stant input datastream and limited memory resources is referred to as incremental learning. A

datastream can be defined as an unbounded sequence of data elements that is indexed on the basis

of when each data element is observed. As pointed out by [109], a datastream can be characterized

by the following fundamental properties:

1) data elements arrive in a continuous manner, sometimes at different rates;

2) datastreams are potentially unbounded in size;

3) following processing, each data element cannot be retrieved unless it is explictly stored in

memory.

Thus, when the data is in the form of a datastream x⃗ = [x1, x2, ..., xt−1], and not available a priori

to training, incremental learning approaches infer a modelMt after every time step t based on the

current data element and the previously learned model (xt,Mt−1). This incremental processing of a

datastream, one element at a time, is commonly referred to as online learning. Although several se-

quence learning approaches have been proposed over the years, only few have successfully demon-

strated the ability to learn incrementally from datastreams without expert supervision [110–113].
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CHAPTER 2

Simplicial Grammar

It has long been recognized that abstractions and approximations are critical to reasoning and

problem solving in humans as well as in AI frameworks where it is used to overcome computational

intractability by decreasing the combinatorial costs associated with searching large spaces [114–

116]. In addition, abstractions and approximations are also useful for acquiring knowledge and

generating explanations [117, 118]. Within Artificial Intelligence, the ability to explain reasoning

processes and results can have a substantial impact on user confidence. Specifically, by providing

evidence of how a result was derived serves to increase user acceptance and guide learning [119,

120]. In this chapter, we introduce the use of topological structures as the primary data abstraction

in a new form of probabilistic generativemodels called simplicial grammar. These grammars derive

their name from the simplicial complexes used to characterize a collection of pattern primitives.

Simplicial grammars are a nonparametric generalization of graph grammars, designed to articulate

the multi-level interdependencies inherent to a complex system via the use of a visually intuitive

representation. A simplicial grammar is an efficient and flexible data structure for representing

multi-dimensional, complex pattern grammars in terms of a well-defined mathematical formalism

that is highly expressive and an ideal extension to traditional probabilistic generative models.

2.0.1 Descripࢢon of Modeling Formalism

We combine simplicial complexes and stochastic grammars in a new modeling formalism that

can be computationally manipulated for the purpose of extracting, analyzing and understanding

key patterns and features of multi-level complex systems. A Simplicial Grammar is a Bayesian
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nonparametric modeling formalism for discrete sequences, which extends traditional graph gram-

mar in order to deal with combinatorial structures. The basic idea is that the state of many complex

systems can be naturally represented (at a suitable level of abstraction) as a simplicial complex,

and (local) transformations of the state can be expressed as production rule applications.

LetK denote an abstract simplicial complex: K = (V, S)whereV is a finite set whose elements

are called the vertices of K and S is a set of non-empty subsets of V that is required to satisfy the

following two conditions:

1) v ∈ V =⇒ {v} ∈ K

2) σ ∈ K, τ ⊂ σ =⇒ τ ∈ K

Recall, each element σ ∈ K is called a simplex of K and is a subset of the vertices from the

vertex set σ = {v0, ..., vd} ⊂ V . If σ ∈ K has precisely d + 1 elements, d ≥ −1, σ is called

a d-dimensional simplex. The face of such a simplex is also a simplex but whose vertices form

a subset of {v0, ...vd}. The dimension of the simplicial complex K is the largest dimension d of

any simplex, dim(K) = max{dim(σ)|σ ∈ K}. The set of all d-simplices of K is denoted by

K(d). Thus, the vertex set can also be regarded as the set of 0-simplices, V = K(0). A simplicial

grammar allows a user to finitely describe a (possibly infinite) collection of simplicial complexes,

i.e., those complexes which can be constructed from an initial simplicial complex through repeated

applications of simplicial production rules. A simplicial production rule is, a rule of the kind

rule
(d)
i : (KC ;KR),

whereKC andKR are simplicial complexes called the context and replacement complexes, respec-

tively. Such a rule is applicable to a host simplicial complex KH whenever there is an occurence

(match) of the KC in KH . The application of this rule on KH yields a new complex K ′
H by re-

moving the occurence ofKC fromKH and replacing it with an isomorphic1 copy ofKR. We write

KH

rule
(d)
i−−−−→ K

′
H to denote that K ′

H was obtained from KH by the application of rule(d)
i .

Thus, the main component of a simplicial grammar is its finite set of simplicial productions.

The form, the notion of match and the mechanisms stating how a production can be applied to a
1Two abstract simplicial complexes Ki, Kj , are isomorphic if there is a bijection b : VKi → VKj , such that σ ∈ Ki

iff b(σ) ∈ Kj , where VK∗ denotes the vertex set of a complex K∗
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simplicial complex, depend on the combinatorial description of the geometric notion of a simpli-

cial complex. Any d-dimensional simplicial complex specified by the replacement-complexKR is

constructed by a unique sequence of operations (insertion, deletion, replacement, etc) performed

on the context-complex KC of KH . It should be noted that the superscript (d) of a simplicial pro-

duction rule, called the operating dimension, indicates the maximal dimension at which operations

are performed. For example, in Figure 2.1, operations are performed at the level of the 0-simplices

from K
(0)
H denoted by the set of singletons = {{a}, {b}, {c}, {d}, {e}, {f}, ...}. In addition, since

rules of maximal dimension d > 0 consist of operations using simplices with boundary faces, ap-

plying such rules on a host complex also involves the recursive application of lower-level simplical

grammar production rules

rule(d−j) : (KC∗ , KR∗), for j = 0, 1, 2, ..d andKC∗ ⊂ KC ,

whose respective context-complexes KC∗ intersect with a common face (simplex) or sequence of

faces (simplex chain) ofKC . This inherent mapping between simplicial dimensions has the added

benefit of allowing for the decomposition of a model into sub-models of desired granularity. An

example illustrating the recursive application of lower-level rules involved in a complex simplicial

rule assembly is given in Figure 2.2.

d

e

f

e

f

rule0{e,f}() rule0{e,f,d}()

G0
[e,f ] G0

[e,f,d]

Simplicial Rule Representation

Parameterized Probabilistic Model

rule0{e,f}(d) = G0
[e,f ](d):

Context Complex Replacement Complex

FIGURE 2.1 0-dimensional Simplicial Production Rule

When modeling spatio-temporal structures, the application of simplicial grammar rules ex-

plictly models both the sequential order of operations and the temporal dependencies inherent to the

sequence/time-series data along with their associated probabilties. In such cases, each simplicial
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grammar rule of operating dimension d ≥ 0, when instantiated, implicitly models the probabil-

ity of a d-simplex chain qd
1:T = (σd

1 , σ
d
2 , ..., σ

d
T ) ∈ Cd , for d ≥ 0, as the product of conditional

probabilities :

P (qd
1:T ) =

T∏
i=1

P (σd
i |σd

i−1) (2.1)

The key assumption underlying a simplicial grammar and each of its simplicial rewrite-rules, is the

existence of a set of random variables drawn from some unknown probability distribution. This

unknown probability distribution is itself drawn from some prior distribution. To allow uncertainty

in distributional assumptions and to avoid critical dependence on parametric assumptions, each

simplicial rewrite-rule is based on a Hierarchical Pitman-Yor process prior. Thus, the conditional

probabilities in (2.1) can be parameterized using random probability measures Gq :

P (qd
1:T ) =

T∏
i=1

P (σd
i |σd

i−1) =
T∏

i=1
Gqd

1:i−1
(σd

i ) (2.2)

Each random probability measure, Gd
q(σ), models the probability of observing a d-simplex

σ ∈ K(d), conditioned on a chain of previously observed simplices q ∈ Cd, given a Hierarchi-

cal Pitman-Yor Process prior:

G∅ ∼ PY P (α∅, d∅, H)

Gq|Gπ(q) ∼ PY P (αq, dq, Gπ(q)) ∀ q ∈ Cd\{∅}

where ∅ denotes the empty chain and π(q) represents a variable-length truncation of chain q. Com-

puting the posterior distribution of a simplicial grammar provides a partition of the data into sub-

grammars, without requiring that the number of subgrammars be pre-specified in advance.

2.0.2 Making Complex Data Analysis More Tractable and Intuiࢢve

The purpose of developing a modeling formalism based on simplicial complexes and stochastic

grammars is to enable users to learn and synthesize knowledge from massive, multi-dimensional,

dynamic, heterogeneous, noisy datasets in a form that is tractable yet intuitive. In the simplicial

grammar modeling formalism users can incorporate methods from the fields of geometry and topol-
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ogy for the purpose of creating an approximation of the topological space from which a finite set

of datapoints (noisy observations) may have been sampled. This approximation provides a plat-

form by which structural features and topological invariants inherent to an empirical dataset can be

extracted, analyzed, searched and stored in-memory for purposes of dimensionality reduction and

quantization. Recall, a simplicial grammar is a collection of stochastic production rules, each de-

scribing a sequence of operations required for the construction of a replacement-complex from an

initial context-complex. Since the instantiation and application of a rule to a host complex takes on

the form of an abstract simplicial complex, topological invariants such as homology groups can be

computed from these complexes via methods developed by the field of Computational Topology.

These invariants can reveal topological attributes not inferred using conventional network-theory

methods, and thus provide an alternative method for discriminating features within large datasets

across multiple scales [95, 97, 121].

Recognition of the importance of simplicial complexes and their combinatorial and topologi-

cal properties can be dated back to the seminal works of Euler and Riemann as well as the rela-

tively recent contribution of homology classes by Poincaré [122]. The topological property known

as homology offers a general procedure by which a sequence of abelian groups or modules can

be associated to a given topological space or manifold. Determination of the different dimen-

sional homology groups provides information about the topological invariant characteristics of a

system which may be subsequently used for recognition, classification and prediction purposes.

The homology group, denoted Hd(X), pertaining to a given topological space X and dimension

d, provides a global description of the d-simplicial chains. Given some simplicial complex K, a

d-dimensional simplical-chain, or d-chain, in K is a finite formal sum of d-simplices, formally

expressed as q = ∑k
i=1 αiσi, where σi are the d-simplices and αi are the coefficients from the field

Z2. It follows from Lemma 3, that under the binary addition operator, a set of d-chains form a

group called the d-th chain group.

Lemma 3. Let K be a simplicial complex and Cd the set of d-chains in K. The set Cd with the

operator + form a group, denoted (Cd,+).

Proof: The identity is the chain 0 = ∑k
i=1 0σi, and the inverse of a chain, −q = q since q + q = 0

under Z2 additions. The set of oriented d-simplices inK, {e1, e2, ..., end
}, define a basis for Cd
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At different dimensions, these chain groups are related by a boundary operator, ∂d, that, given

a d-simplex, returns the (d − 1)-chain of its boundary (d − 1)-simplices. Thus, if σ = [v0, ..., vd]

denotes a d-simplex, its boundary is ∂dσ = ∑d
i=0(−1)i[v0, ..., v̂i, ..., vd]. Furthermore, because the

boundary operator commutes with addition, ∂d(q1 +q2) = ∂dq1 +∂dq2, if extended to chain groups,

the map ∂d : Cd → Cd−1 becomes a homomorphism. A sequence of chain groups connected

by these boundary homorphisms is called a chain complex Ĉ. To define the homology groups of

dimension d, we must focus on the two simplicial-chain subtypes, d-cycles and d-boundaries. A

d-dimensional simplicial cycle or d-cycle, z, is a d-chain whose boundary is zero, ∂dz = 0. The set

of all d-cycles form a group denoted Zd ⊆ Cd, where Zd is a subroup of Cd. Since Zd is the set of

all d-chains that go to zero under the dth boundary homomorphism, Zd is the kernel of ∂d denoted

Zd = ker∂d. Furthemore, a d-dimensional simplicial-boundary or d-boundary is a d-chain that is

the boundary of a (d+ 1)-chain, z = ∂d+1q for q ∈ Cd+1. The set of all d-boundaries form a group

denoted Bd ⊆ Cd, where Bd is a subgroup of Cd. The group of d-boundaries is the image of the

(d + 1)-st boundary homomorphism, Bd = img∂d+1. From the fundamental lemma of homology

(Lemma 2), which intuitively states that the boundary of a boundary is null, it follows that Bd is

a subgroup of Zd. From this we can define an equivalence relation over Zd. Two d-cycles z1 and

z2 are considered homologous if the d-cycle z1− z2 is a d-boundary. The equivalence class of a d-

cycle z1 is the homology class [z1]. Addition of homology classes is well-defined; for any d-cycles

z1 and z2, we have [z1 + z2] = [z1] + [z2]. Thus, the set of homology classes of d-cycles forms a

well-defined group under addition, called the dth homology group, Hd. By taking the quotient of

the cycle groups with the boundary groups, we can define the homology groups for each dimension

d, Hd = Zd

Bd
. Thus, each homology group is the collection of d-cycles that are not boundaries of

(d+ 1)-simplices. The rank of the d-th homology groupHd is called the d-th Betti number βd and

informally describes the number of unconnected d-dimensional surfaces.

In addition to allowing users to identify distinct features of a topological space such as a torus,

sphere, or annulus, these homology groups can be used for dimensionality reduction, as well as for

quick visual inspection and recognition of discrepancies indicative of distinct classes of patterns

that are only evident after scrutinizing the connectivity and shape of a given dataset.
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2.0.2.1 Dimensionality Reducࢢon

The use of geometry and topology for the purpose of analyzing high-dimensonal data has gar-

nered significant attention in recent years due to continued advancement in technology and the

resultant abundance of generated data [95]. The primary application of methods from these fields

has been in reducing data size while minimizing information loss [123]. This process, also known

dimensionality reduction, focuses on reducing the dimensionality of a given dataset and extracting

a low-dimensional embedding while preserving as much structural information as possible. In prac-

tice, the structural property being preserved is often expressed as the pairwise distances or topology

between objects. The application of dimensionality reduction techniques enables visualization of

high-dimensional data and solves a fundamental problem in many data analysis tasks–estimating

the appropriate number of dimensions required for representing a given dataset without consider-

able loss of information. Dimensionality reduction methods can be divided into two groups, linear

and non-linear methods. Popular linear methods include Principal Component Analysis (PCA),

Linear Discriminant Analysis (LDA), Multi-Dimensional Scaling (MDS), Factor Analysis (FA),

and Linear Regression among many others, which transform original variables into new variables

using a linear combination of the original variables. However, the assumption of linear relation-

ships among variables is not strictly valid. Often data lies on a non-linear manifold/surface, in

which case non-linear methods such as Locally Linear Embedding (LLE), and Isomap are often

used instead. Although these non-linear techniques often make fewer hypotheses about the under-

lying manifold/surface and/or model, they require the use of optimization procedures, evaluation

criteria and the definition of application-specific objective criteria [124].

Recent progress in the field of Computational Topology [95, 121, 125] has provided additional

tools for dimensionality reduction by using homology to measure topological features of a surface

or manifold from discrete data sets. One approach in particular, known as persistent homology, has

seen recent widespread use in scientific and engineering applications [97]. This approach allows

for the topological simplification of combinatorial data by measuring the life-time of intrinsic topo-

logical features via a filtration process that incrementally builds simpicial complexes of increasing

complexity and structural stability through a sequence of nested subcomplexes. As a result, each
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preceding subcomplex is contained within the simplicial complex generated in subsequent filtration

stages. Consider the following sequence describing the filtration of a simplicial complexK

K0 ⊂ K1 ⊂ ... ⊂ Kn = K

This increasing sequence can be understood as a process in which new simplices are incrementally

added following changes to some free parameter. This filtration parameter can be used to capture

additonal quantitative information about the topological invariants at multiple geometric scales

such as the birth and death of individual connected components (dimension 0), tunnels (dimension

1) and voids (dimension 2).

2.0.2.2 Homology Group Computaࢢon

In order to compute homology modules from simplicial grammar, we have implemented an

extension to the Buchberger and Schreyer algorithms [103, 126] based on similar work in the area

of Topological Data Analysis [127]. This extension recasts homology analysis as a problem within

computational algebraic geometry, and allows us to utilize powerful algorithms from this area for

computing Gröbner bases for ideals and the related szygy modules in simplicial grammars. Specif-

ically, for a given dimension q, we compute:

1) the boundary module im∂q+1

2) the cycle module ker∂q

3) the quotient Hq

The boundary module is obtained by computing a Gröbner basis via the Buchberger algorithm,

given in Algorithm 1 , and then performing the submodule membership problem via the division

algorithm for multivariate polynomials. The cycle module is subsequently obtained via Schreyer’s

algorithm by computing the syzygy submodule. Finally, the quotient is computed by determin-

ing whether the generators of the syzygy submodule are in the boundary submodule (submodule

membership problem).

Let, C∗
q denote the set of q-simplex chains representative of the context complexes of sim-

plicial production rules in a simplicial grammar SG. Assuming the field is Z2, the chains of C∗
q
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Algorithm 1 Buchberger algorithm pseudocode
1: procedure Buchberger(f1, ..., fm)
2: G = {f1, ..., fm},
3: P = {Spoly(fi, fj) ̸= 0|0 ≤ i < j ≤ s}
4: for each p ∈ P do
5: P = P − {p}
6: if h = Reduce(p,G) ̸= 0 then
7: G = G ∪ {h},
8: P = P ∪ {Spoly(g, h) ̸= 0|g ∈ G}
9: end if
10: end forreturn G
11: end procedure
12:
13: procedure Spoly(f1, f2)
14: c = LC(f1)/LC(f2),
15: sij = lcm(LM(fi),LM(fj))

LM(fj)
16: return s21f1 − cs12f2
17: end procedure
18:
19: procedure Reduce(f, {g1, ..., gt})
20: while there exists a gi such that LM(gi) divides LM(f) do
21: c = LC(f)LM(f)

LC(gi)LM(gi) ,
22: f = f − cgi

23: end while
24: return f
25: end procedure

52



www.manaraa.com

are in one-to-one correspondence with the set of subsets of q-simplices. A q-simplex chain corre-

sponds to a nq-dimensional vector, whose nonzero entries correspond to the included q-simplices.

Here nq is the number of q-simplices in SG. We can compute the boundary of a q-chain by

multiplying the chain vector with a boundary matrix, whose column vectors are boundaries of q-

simplices in the SG. Since the boundary maps ∂q are homomorphism between free abelian groups

∂q : Cq(SG)→ Cq−1(SG), they can be expressed as integer-valued matricesMq. Row reduction of

Mq allows for the identification of a basis v1, ..., vn forZq(SG). As a consequence ofMqMq+1 = 0,

the columns of Mq+1 are in the kernel of Mq, and can thus be expressed as linear combinations

of the vi. These linear combinations are determined via row reduction of the augmented matrix

(v1...vn|Mq+1). Thus, the computation of the Betti number can be rewritten as:

βq = (nq − rank(Mq))− rank(Mq+1) (2.3)

Given the simplicial complex K in Figure 2.3 containing (5) 0-simplices, (8) 1-simplices and

(2) 2-simplices along with the boundary matrices in Figure 2.4, it can be shown that this com-

plex contains one nontrivial homology class, represented by three different non-bounding cycles,

(ab + bc + cd + da),(ab + bc + ca), (ab + bc + ce + ea), whose corresponding vectors are

(1, 0, 1, 0, 1, 1, 0)T , (1, 1, 0, 0, 1, 0, 0)T and (1, 0, 0, 1, 1, 0, 1)T respectively. Simarily, for a set of

q-simplicial production rules with identical replacement-complexes (Figure 2.5), we would seek to

compute the appropriate homology groups and their representative non-bounding cycles. These

invariants are to serve as a tool for identifying the latent higher-dimesional pattern primitives,

whose boundary-cycles can be described by pre-existing simplicial production rules. These higher-

dimensional pattern primitives will be used to guide the incremental inference of new grammars

based on data obtained from new scales of observation. The basic aim is exploit the computation

of homology groups and other topological invariants in studying the relationship/mapping between

local and global structures for simplicial grammars. It is important to note that the selection and

extraction of the finite set (or alphabet) of distinct pattern-primitives that underly complex patterns

and the construction of simplicial grammar is a nontrivial challenge. We address this fundamental

problem by building on the theory and methods of vector quantization and k-means clustering for
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the purpose of identifying the initial set of pattern-primitives and subsequent decomposition of any

complex data sequence into a topological representation.

2.0.2.3 Data Quanࢢzaࢢon

Although measurements of many real-world phenomenon are continuous, it is often desirable

to represent data as discrete variables. Quantization (or discretization) is the process by which a

continuous variable is converted into a discrete variable. In such cases, the discretized variable

has a finite number of possible values, a number that is considerably smaller than the number

of possible values found in the empirical dataset. In addition to improving the representation,

interpretation, and accessibility of data, continuous feature quantization also offers to increase the

speed of induction algorithms [128]. This benefit becomes more apparent in subsequent sections

of Chapter 3 detailing the proposed method of grammatical induction for simplicial grammar

Given an arbitrary k-dimensional dataset of N observed datapoints for which we do not

know the probability distribution function, we seek to find L Voronoi regions representative of

0-simplices (pattern primitives) in the k-dimensional Euclidean space, where N >> L, by mini-

mizing the total squared error. An iterative splitting implementation of the LBG algorithm proposed

by Linde, Buzo, and Gray in [129], is used for the purpose of generating a discrete probability dis-

tribution defined over a set of pattern-primitives (finite alphabet), that could subsequently be used

as the base measure of a Simplicial Grammar’s Hierarchical Pitman-Yor Process prior. The im-

plementation of this algorithm which we will call LBGSplit, starts with a base measure of size 1,

where the only simplex corresponds to the centroid of the training set. The base measure is itera-

tively enlarged until the number of simplices reaches sizeL. The sketch of theLBGSplit algorithm

is given in Algorithm 2.

The result of this algorithm is a set of Voronoi simplices {Y ∗
i }l

i=1 describing the centroids of k-

dimensional partitions (Voronoi regions),{V (l)
i }, of Rk, i.e., ∪l

i=1Vi = Rk. Put simply, the Voronoi

region Vi of the Voronoi simplex Yi, is the partition such that any observed point in Vi is closer to

Voronoi simplex Yi than any other Yj .

Vi = {X = (x1, ..., xk) ∈ Rk|d(Yi, X) < d(Yj, X)∀j ̸= i}
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Algorithm 2 LBGSplit Pseudocode
Initial number of Voronoi simplices l = 1;
Maximum iterations =M ;
Threshold for change in distortion = ϵ;
1: procedure LBGSplit(l)
2: while l ≤ L do
3: {Y ∗

i }l
i=1 ▷ Initialize Voronoi simplices

4: V ∗
i = X : d(X, Y ∗

j ) < d(X, Y ∗
i )∃j ̸= i ▷ Calculate Voronoi regions for training set

5: Dl ←MinimizeDistortion()
6: D2l ← LBGSplit(l ← 2 ∗ l) ▷ Split each Voronoi region into 2 new subregions
7: if |D2l −Dl| < ϵ then
8: return Dl

9: end if
10: end while
11: end procedure
12:
13: procedureMinimizeDistortion()
14: m = 0;
15: D0 = ∑l

i=1
∑

X∈V 0
i
(X − Y 0

i )T (X − Y 0
i ) ▷ Compute initial distortion

16: for (m <M) do
17: Y

(m+1)
i = 1

|V (m)
i |

∑
X∈V

(m)
i

X ▷ Compute centroid of Voronoi simplex

18: D(m+1) = ∑l
i=1

∑
X∈V

(m+1)
i

(X − Y (m+1)
i )T (X − Y (m+1)

i ) ▷ Compute new distortion
19: if |Dm+1 −Dm| < ϵ then
20: return Dm

21: end if
22: end for
23: end procedure
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As previously noted, the primary goal of the algorithm is to reduce error (distortion) by means of

minimizing the sum of squared distances between each observed datapoint and its closest Voronoi

simplex. At each iteration of the algorithm, the set of Voronoi simplices is refined to minimize

distortion. As a result, the change in distortion is used as a stopping criterion.

To further exploit the inherent structure and network of interdependencies among the primitive

elements that form complex patterns, we use the finite set of Voronoi 0-simplices, Σ, obtained via

the aforementioned LBGSplit algorithm to perform quantization on the continuous-valued input

variables gathered empirically. Recall that a simplicial complexK is a collection of simplices and

vertices V . Given, V = K(0) = Σ ⊂ C0(K), for each vertex v ∈ V, we associate a distinct 0-

simplex from the alphabet set Σ, whereK(0) denotes the set of all 0-simplices and C0(K) the 0-th

chain group of the simplicial complex. Since the set of Voronoi simplices used for quantization

correspond to a finite alphabet of pattern-primitives, each quantized sequence of discrete-valued

variables in our empirical data set can thus be regarded as a chain of pattern-primtives, or a 0-

simplex-chain c of length |c|.
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FIGURE 2.3 Simplicial Complex K

M1 =

ab ac ad ae bc cd ce



a 1 1 1 1 0 0 0
b 1 0 0 0 1 0 0
c 0 1 0 0 1 1 1
d 0 0 1 0 0 1 0
e 0 0 0 1 0 0 1

M2 =

acd ace



ab 0 0
ac 1 1
ad 1 0
ae 0 1
bc 0 0
cd 1 0
ce 0 1

FIGURE 2.4 Boundary matrices of simplicial complex K
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FIGURE 2.5 Multiple simplicial production rules with identical replacement-complex
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CHAPTER 3

Syntacࢢc Nonparametric Analysis of

Complex Systems

In the preceding chapter we proposedmodeling the state of a complex biological system/process

at a given moment in time as a simplicial complexK, via a set of vertices V , and a collection S of

finite non-empty subsets of V that satisfies the axioms:

Axiom 4. For each v ∈ V , the singleton {v} ∈ S

Axiom 5. If σ ∈ S and τ ⊂ σ is non-empty, then τ ∈ S,

where an element σ ∈ S consisting of n + 1 elements corresponds to a n-simplex of K. This

modeling process would begin with the selection of a set of 0-simplices that constitute the basis

of the 0th-chain group and correspond to the vertex set V . These 0-simplices would represent the

lowest-level granularity at which a complex biological system/process can be modeled. In an unsu-

pervised learning setting, the basis of 0-simplices correspond to a finite set of discrete values used

to represent the underlying data space of a complex biological system/process inferred via quanti-

zation. This finite, non-empty set of data-derived elements can be referred to as the alphabet Σ of

pattern-primitives with which we can construct more complex patterns. For continuous-valued

data, these 0-simplices can be obtained via the aforementioned quantization procedure, where

continuous-values are discretized according to a finite-size quanization map.

In the SYNACX framework, the spatio-temporal dynamics and emergent behavior of complex

biological systems/processes are to be learned from sequence data and represented as simplicial
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grammar–that is, probabilistic generative models for sequence data inferred and explictly modeled

as simplex chains in an abstract compositional language. Recall, a simplicial grammar is a col-

lection of simplicial production rules, SG = {rule(d)
i }i<|SG|, defined over a vertex set V = K(0)

(alphabet Σ), with operations occuring at dimension (d) ≥ 0 involving simplices fromK(d). Each

rule rule(d)
i : (KC , KR) in a simplicial grammar describes a unique pair of simplicial complexes for

its context-complex and replacement-complex. A sub-grammar is a subset of the rules that make

up a given simplicial grammar. When modeling spatio-temporal structures learned directly from

data, the collection of simplicial grammar production rules can explicitly model both the sequential

order of operations and the temporal dependencies that underly a data sequence. Given a complex

biological system/process data sequence, x⃗, it is desirable to automatically infer a collection of

simplicial grammars that can generalize the syntactic and statistical properties of the data sequence

using a hierarchy of latent variables that can be explicitly modeled as simplicial chains. By assum-

ing that the syntactic structure of the data sequence can be modeled at multiple levels of granularity,

from the lowest-level (fine-grain resolution) using a 0-simplex chain of primitives, q0 ∈ C0, to in-

creasingly higher levels using an emergent d-simplex chain of d-dimensional simplices, qd ∈ Cd,

a complex biological system/process model can be defined in which the distribution over lower-

level granular chains is regularized using higher-level granular chains. In addition, by factoring the

probability of the data sequence under a distribution, P (x⃗), discrete subsequences can be directly

modeled using the set of conditional distributions,

P (x⃗) = P (x0)P (x1|x0)P (x2|x0, x1) . . . , P (xN |x0, . . . , xN−1).

The combination of simplicial chains with associated conditional probability distributions in the

simplicial grammar modeling formalism provides a versatile approach to encoding the large num-

ber of highly interconnected dynamic units of a complex biological system/process into a simplicial

complex which can be considered a combinatorial version of a topological space. Consequently,

the invariants of each simplicial grammar can be studied from a probabilistic, topological, combi-

natorial and algebraic perspective, each one providing completely different measures that can be

used to discriminate between classes of phenomena across multiple scales.
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3.0.1 Overview

We propose constructing the underyling probabilistic model of the Simplicial Grammar for-

malism in an incremental and hierarchical manner. By incremental, we mean that batches of

non-annotated sequence data are learned, one datum at a time. In the SYNACX framework we

define a Bayesian Nonparametric predictive model and approximate inference procedure for data

sequences of unbounded complexity with which we can build expressive models of complex bi-

ological systems/processes using minimal implicit assumptions or expert supervision. In design-

ing and justifying such a model and inference procedure for biomedical datastreams, we extend

definitions and inference methods for building hierarchical Pitman-Yor Processes–hierarchical

models of sequential stochastic processes that generate discrete observations. Let the basis of

the 0th-chain group, {e0
1, e

0
2, e

0
3, ...}, correspond to an alphabet V . Given a k-dimensional in-

put data sequence x1:i = [x0, x1, x2, ...xi], the learning process begins by incrementally quan-

tizing each each datapoint via Algorithm 2, such that we obtain a simplex chain of 0-simplices

q1:i = [e0
x0 + e0

x1 + e0
x2 + ... + e0

xi
]. The SYNACX framework works to infer and model the

spatial and temporal dependencies inherent to this input simplex chain by incrementally learning

a predictive probability distribution and constructing a collective grammar, Gq1:i . To allow uncer-

tainty in distributional assumptions and to avoid critical dependence on parametric assumptions, the

probabilistic model of each simplicial grammar is represented by a set of random variables drawn

from some unknown probability distribution. This unknown probability distribution is itself drawn

from some prior distribution. Thus, each simplicial grammar can be parameterized using random

probability measures Gq based on an underlying Hierarchical Pitman-Yor process prior. To make

grammar induction computationally tractable for time-series data, we utilize a marginalized hier-

archy of Hierarchical Pitman-Yor processes inspired by the language models in [83, 130] and the

Sequence Memoizer [131–133]. In this marginalized hierarchy, the discount hyperparameters are

stochastically optimized while the concentration parameter is set to zero.

Information about an already observed input sub-sequence q⃗1:i = {e0
x0 + e0

x1 + ... + e0
xi
} and

its probability distribution (3.1) is maintained in a collection of sub-grammars that constitute the

collective grammar G, where each sub-grammarGq⃗1:i ∈ G defines the conditional distribution over
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V .

P (q⃗1:i) =
i∏

j=1
P (e0

xj
|e0

xj−1
) =

i∏
j=1

Gq⃗1:j−1(j) (3.1)

Each simplicial grammar production rule, Gq⃗1:i(e0
k), models the probability of observing a pattern-

primitive e0
k ∈ V , conditioned on the observed simplicial chain q⃗1:i , given a Hierarchical Pitman-

Yor Process prior:

G∅ ∼ PY P (d∅, H)

Gq⃗1:i|Gπ(q⃗1:i) ∼ PY P (dq⃗1:i , Gπ(q⃗1:i)) ∀q⃗1:i ∈ C0/{∅}

where ∅ denotes the null set and π(q⃗1:i) = {e0
x1 + ...+ e0

xi
} represents a variable-length truncation

of the observed simplex chain q⃗1:i = {e0
x0 + e0

x1 + ... + e0
xi
}. In this setup, the joint probability of

the observed simplicial chain q1:i and the collective grammar G is given as:

P (q1:i,G) = P (G)
|q|−1∏
i=0

Gq1:i(qi+1) (3.2)

where the rightmost term is the probability of each primitive conditioned on the 0-chain observed

thus far, and P (G) is the hierarchical prior describing the unbounded set of latent variables for the

generative collective grammar based on all recent observations. To make SYNACX tractable for

biomedical datastreams, a collective grammar of bounded space complexity is maintained via up-

date operations, such that only a finite number of sub-grammars and production rules can be stored

at a given moment in time. These maintenance operations given in Algorithm 3 (lines 15-22) up-

date the collective grammar and its hierarchical probabilistic model in an adaptive manner that is

conducive to learning complex biological system/process data. In the current SYNACX imple-

mentation, simplicial production rules which share the same context-complex are grouped together

into a grammar uniquely identified by the collection of simplices that constitute their respective

context-complex. For example, after learning from a sequence of observations which includes the

0-simplex chain q = [σ0
B, σ

0
A, σ

0
D], we obtain a collective grammar denoted in (3.5) consisting of

various size simplicial grammar. The largest grammar in this collective grammar, Gσ0
B+σ0

A+σ0
D
, is

denoted in (3.4) and depicts those simplicial production rules inferred from the simplex chain which
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share the same context-complex {σ0
B +σ0

A +σ0
D}. The collection of grammars denoted in (3.3) are

also a part of the collective grammar. A subset of these grammars (G∅, Gσ0
A
, Gσ0

B
, Gσ0

D
, Gσ0

A+σ0
D

)

are referred to as the sub-grammars of Gσ0
B+σ0

A+σ0
D
because their respective context-complexes all

intersect the context-complex {σ0
B + σ0

A + σ0
D}.

G[∅] :=



{∅} → {σ0
A}

{∅} → {σ0
B}

{∅} → {σ0
C}

{∅} → {σ0
D}

{∅} → {σ0
E}

{∅} → {σ0
X}

{∅} → {σ0
Y }

{∅} → {σ0
Z}

G[σ0
A] :=



{σ0
A} → {σ0

B}

{σ0
A} → {σ0

C}

{σ0
A} → {σ0

Y }

G[σ0
B ] :=



{σ0
B} → {σ0

A}

{σ0
B} → {σ0

E}

{σ0
B} → {σ0

Y }

G[σ0
D] :=


{σ0

D} → {σ0
A}

{σ0
D} → {σ0

B}

G[σ0
B+σ0

A] :=
{
{σ0

B + σ0
A} → {σ0

Y }

G[σ0
C+σ0

A] :=


{σ0

C + σ0
A} → {σ0

Y }

{σ0
C + σ0

A} → {σ0
B}

G[σ0
A+σ0

D] :=


{σ0

A + σ0
D} → {σ0

A}

{σ0
A + σ0

D} → {σ0
B}

(3.3)

G[σ0
B+σ0

A+σ0
D] :=


{σ0

B + σ0
A + σ0

D} → {σ0
B}

{σ0
B + σ0

A + σ0
D} → {σ0

A}
(3.4)

G :=



GL0
∅ Root grammar

GL1
[σ0

A] GL1
[σ0

B ] GL1
[σ0

C ] GL1
[σ0

D] Level-1 grammar

GL2
[σ0

B+σ0
A] GL2

[σ0
C+σ0

A] GL2
[σ0

A+σ0
D] Level-2 grammar

GL3
[σ0

B+σ0
A+σ0

D] Level-3 grammar

(3.5)

The SYNACX algorithm takes a Bayesian approach to learning this collective grammar by

treating the distributions over subsequent input observations as latent variables on which a hierar-

chical nonparametric prior is placed. Prediction of a subsequent input observation is performed by

averaging over the posterior distribution conditioned on the simplex chains observed thus far. To
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achieve this, inference is performed in the Chinese Restaurant Franchise representation [83, 130],

where the posterior distribution is incrementally updated after each observation. In this represen-

tation, the state of each Pitman-Yor process associated with a grammar Gq ∈ G is represented in

terms of two sets of counts

CGq ≡ {cGqσk}σ∈Σ,k∈{1,...,tGqσ} (3.6)

TGq ≡ {tGqσ}σ∈Σ (3.7)

The count cGqσk corresponds to the number of draws of type σ from the Pitman-yor process as-

sociated with a grammar Gq assigned to the k-th draw from its base measure Gπ(q), whereas tGqσ

corresponds to the number of draws from this base measure. The sets of counts for all grammars

Gq ∈ Gq1:i , is referred to as the state of the collective grammar StateGq1:i
= {CGq , TGq}Gq∈Gq1:i

and

serves as a sufficient statistic for its joint distribution.

To compute the predictive probability of a primitive associated with a production rule in gram-

mar Gq, we follow the Poly urn model as follows:

P(σ|Gq, StateGq1:i
) =

cGqσ − dGqtGqσ

cGq·
+
dGqtGq·

cGq·
P(σ|Gπ(q), StateGq1:i

) (3.8)

when cGq· ̸= 0 and P(σ|Gq, StateGq1:i
) = P(σ|Gπ(q), StateGq1:i

) otherwise. In order to compute

the predictive distribution P(σ|Gq,q1:i) of a primitive σ in some grammar Gq after having ob-

served input q1:i, (3.8) has to be averaged with respect to the posterior distribution over states

P(StateGq1:i
|q1:i). In the SYNACX framework we implement an approximate inference scheme

with which this posterior distribution P (Stateq1:i) can be estimated by using samples drawn from

it. These samples come in the form of various permutations of the counts {CGq , TGq}Gq∈Gq1:i
. This

scheme allows us to sequentially update samples from P (Stateq1:i−1 |q1:i−1) such that they become

samples from P (Stateq1:i). Intuitively, this update scheme can be understood as a Particle Filter or

Sequential Monte Carlo method [134], in which a set of samples/particles {Samplej
q}MaxP articles

j=1 is

used to approximate the current estimate of the posterior distribution over the model space, condi-

tional on observed data. This approximation is represented as a weighted sample, with each particle
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(a) Chinese Restaurant Franchise representation of a collective grammar Gq

�1
1,1 = ✓1 �1

1,2 = ✓1 �1
1,n = ✓2 ...

q1 q2q5 q11
c. = 8 customers in G1

1

t. = 3 tables in G1
1

q24 q25q26
q27

c✓1 = 7 customers in G1
1 served dish � = ✓1

t✓1 = 2 tables in G1
1 serving dish � = ✓1

c✓2 = 1 customer in G1
1 served dish � = ✓2

t✓2 = 1 table in G1
1 serving dish � = ✓2

(b) Chinese Restaurant representation of simplicial sub-grammar from Gq

FIGURE 3.1 Chinese Restaurant representation of Simplicial Grammar
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FIGURE 3.2 Possible customer and table configurations based on observations assigned to G1
1. Each con-

figuration r ∈ RG1
1σ ∈ RG for a given dish σ in sub-grammar G1

1 is sampled from a partition distribution
generated for N = 8 observations
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maintaining a possible state of the model. The particle filter inference procedure is implemented in

SYNACX using a single particle. Updates in this scheme can be understood in the following way:

for every new observation associated with the collective grammar, counts are incremented for some

subset of the grammars in StateGq1:i
. Although using more than one particle can improve the ac-

curacy of the posterior distribution, this improvement comes at the cost of algorithmic complexity,

which increases linearly with the number of particles used. For online predictive modeling tasks

performed in a non-distributed computing environement, we recommend using a single particle

implementation of the SYNACX algorithm. In the Chinese Restaurant representation, this parti-

cle represents the state of the collective grammar, StateGq1:i
, and maintains the current estimate of

the posterior distribution from which the predictive probability of a primitive σ given a grammar

Gq ∈ Gq1:i , P (σ|Gq, StateGq1:i
), can be computed. In view of a new observation qi+1, StateGq1:i

is

updated by drawing samples from it, such that P (StateGq1:i
, q1:i) becomes P (StateGq1:i+1

, q1:i+1).

Following the i+ 1th observation, qi+1, we can obtain the configuration of the hierarchical

Pitman-Yor processes (Figure 3.1) associated with the collective grammar RGq1:i+1
∼ E|q1:i+1|,

where E|q1:i+1| describes the two-parameter Ewen’s ESN(d, α) distribution of N = |q1:i+1| ob-

servations over K partitions, for all possible N and K [135]. In order to sample such a partition

distribution, we follow Ewen’s sampling formula [136]:

P (m1, ...,mn) = n!∏n
i=1(i!)mimi!

µ(m1, ...,mn)

with

µ(m1, ...,mn) = E
[ ∑ n∏

i=1

mi∏
j=1

V i
n(i,j)

]
.

We generalize this formula for the Pitman-Yor Process, with µ(m1, ...,mn) = µd,α(m1, ...,mn)

describing the mean probability distribution of a partition of length k , via the formula:

µd,α=0(m1, ...,mn) = [d]k−1
d

[1]n−1
1

n∏
j=1

([1− d]j−1
1 ) (3.9)

For a hierarchy of Hierarchical Pitman-Yor processes, where the partition distribution is condi-

tioned on the length of partitions being tGq·, the joint posterior distribution can be denoted as fol-
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lows1:

P (StateGq1:i+1
,q1:i+1) =

 ∏
σ∈Σ

H(σ)tG∅σ

 ∏
Gq∈G

 [dGq ]
tGq·−1
dGq

[1]cGq·−1
1

∏
σ∈Σ

∏
r∈RGqσ∈RG

[1 − dGq ]
|r|−1
1


(3.10)

This update scheme is interleavedwith the construction of the collective grammar and the prediction

of the next primitive.

3.0.2 Implementaࢢon

For each observation in an input data sequence, Algorithm 3 works to first compute the pre-

dictive probability distributions for the current observation by grammar induction. During this

stage, the algorithm identifies a grammar GKC
∈ G whose context-complex intersects the most

with the collection of observed simplex-chains stored in the memory-complexM. The predictive

probability distribution of this grammar is computed in Algorithm 7 according to (3.8) and sub-

sequently used to update the state of a subset of grammars in the collective, G = {Gq}, whose

context-complex intersect the most with GKC
.

Incremental construction of G is handled by Algorithm 4 and results in the creation of two or

fewer sub-grammar for every observation. To do this either a new sub-grammar,GK , that is a direct

extension of an existing sub-grammar, Gπ(K), with overlapping context complex is created via the

generateGrammar() subroutine, or an intermediate sub-grammar is created instead via Algorithm

5. This new intermediate sub-grammar is linked to both Gπ(K) and the new grammar GK . In

both cases, the counts of grammar GK are used to estimate the predictive distribution. Following

construction, the current observation is integrated into the underlying probability model via Algo-

rithm 8 by adjusting counts in all sub-grammars related to GK . During this process, Algorithm

10 computes the partial stochastic gradient of (3.8) with respect to the discount hyperparameters

dq of each sub-grammar with a context-complex intersecting that of GK . Starting at grammar GK

and progressing down to the root sub-grammar G∅, Algorithm 8 makes a stochastic decision to
1Here we use Kramp’s general notation to concisely express the product of the factors of an arithmetic progression

as [c]ab ≡
∏a−1

i=0 c + ib
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increment cσ if tσ was incremented in the sub-grammar below. This follows the Chinese Restau-

rant process metaphor where each observation of σ in grammar Gq1:i−1 corresponds to a customer

in a restaurant Gq who is served dish σ, and each table in each restaurant Gq being a draw from its

base measure, Gπ(q), also corresponds to a customer in the parent restaurant Gπ(q). This relation is

a consequence of the hierarchy of Pitman-Yor measures and expressed as follows:

cGπ(q)σ = cGπ(q)σ +
∑
Gq

tGqσ,


cGπ(q)σ = 1 if dish σ is observed in Gπ(q)

cGπ(q)σ = 0 otherwise.
(3.11)

In addition, if c is larger than θmax in any sub-grammar, the counts cσ and potentially tσ are reduced.

The gradients for the set of discount parameters δ⃗ = [δ0, δ1, ..., δω] are then updated based on the

calculated gradients using learning rate η by defining δn = δγn−ω

ω for n ≥ ω, and δn for n ≤ ω.

Lastly, the current observation is added to the memory-complexM.

3.0.3 Algorithm Pseudocode
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Algorithm 3 SYNACX
1: procedure SYNACX(q)
2: M← {} ; ▷ Initialize memory-complex
3: StateG ← {} ; ▷ Initialize state of collective grammar G
4: G← {} ; ▷ Initialize root grammar of G
5: δ⃗ ← [δ0, δ1, . . . , δω] ▷ InitializeHPYP discount hyperparameters
6: N ← 1 ▷ number of grammars in G
7: ζmax ▷ max length of simplex chains
8: Υmax ▷ max number of grammars in G
9: θmax ▷ max number of observations associated with each grammar
10: Mmax ▷ max number of observations associated with memory-complex
11:
12: for i = 0 : |q| − 1 do
13:
14: ∇ ← 0⃗ ▷ hyperparameter gradient
15: while |M| ≥Mmax do ▷Maintenance operation enforcing bound onM
16: M←deleteAndUpdateMemory(M)
17: G←deleteAndUpdateGrammar(G∗,G)
18: end while
19: while N > (Υmax − 2) do ▷Maintenance operation enforcing bound on G
20: N ← N − 1
21: G←deleteAndUpdateGrammar(Grandom,G)
22: end while
23: Gq1:i+1 , GKC

← grammarInduction(Mq1:i ,Gq1:i)
24: PKC

← computePredictiveDistro(GKC
, P = 0⃗,mf = 1.0)

▷ Update probability of relevant grammar rules following incorporation of observation qi+1
25: updateGrammarState(GKC

, PKC
,qi+1, TRUE)

26: δ⃗ ← δ⃗ + η∇
PKC

(qi+1)
27: M←M+ qi+1
28: end for
29: end procedure
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Algorithm 4 grammarInduction
1: function Gq1:i+1 , GKC

←grammarInduction(Mq1:i ,Gq1:i)

2: Find the grammar GK∗
C
in G whose context-complex K∗

C intersects the most withMq1:i .
3: if K∗

C of GK∗
C
is a subcomplex of q1:i+1 and |K∗

C | < ζmax then
4: Gq1:i+1 ,Gq1:i+1 ←generateGrammar(q1:i+1, GK∗

C
,Gq1:i)

5: GKC
← Gq1:i+1

6: N ← N + 1
7: return Gq1:i+1 , GKC

8: else
9: Gq1:i+1 , Gq1:i+1 ←subGrammarInduction(q1:i+1, GK∗

C
,Gq1:i)

10: GKC
← Gq1:i+1

11: N ← N + 1
12: return Gq1:i+1 , GKC

13: end if
14: end function

Algorithm 5 subGrammarInduction
1: function Gq1:i+1 , Gq1:i+1 ←subGrammarInduction(q1:i+1, GK∗

C
,Gq1:i)

2: d = 1.0
3: if GK∗

C
is the root grammar then ▷ i.e. K∗

C = null complex
4: d← dδ0
5: else
6: for i = (|π(K∗

C)|+ 1) : |K∗
C | do

▷ π(K∗
C) denotes the context-complex of an existing sub-grammar Gπ(K∗

C), such that π(K∗
C)

is the largest subcomplex ofK∗
C learned thus far.

7: if i ≤ ω then
8: d← dδi

9: else
10: d← dδγi

ω

11: end if
12: end for
13: end if
14: L←largest subcomplex in common withK∗

C andM
15: Gq1:i , GL ← generateGrammar(L, π(K∗

C),Gq1:i)
16: N ← N + 1
17: π(Gπ(K∗

C))← GL
▷ π(Gπ(K∗

C)) denotes the largest sub-grammar, such that π(K∗
C)← L
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Algorithm 6 subGrammarInduction (continued)
18: d = 1.0
19: if GL is the root grammar then
20: d← dδ0
21: else
22: for i = (|π(L)|+ 1) : |L| do
23: if i ≤ ω then
24: d← dδi

25: else
26: d← dδγi

ω

27: end if
28: end for
29: end if
30: for σ ∈ Σ do
31: ϱ← createPartition (c

GK∗
C

σ , t
GK∗

C
σ , d

GK∗
C )

32: tGL
σ ← t

GK∗
C

σ

33: t
GK∗

C
σ ← 0

34: for i= 1 : |ϱ| do
35: τ ← 1
36: for j = 2 : ϱ[i] do
37: h← 0

38: h← 1 w.p.
τ d

GK∗
C

dGL
−d

GK∗
C

j−1−d
GK∗

C

39: τ ← τ + h
40: end for
41: t

GK∗
C

σ ← t
GK∗

C
σ + τ

42: end for
43: cGL

σ ← t
GK∗

C
σ

44: end for
45: Gq1:i+1 , Gq1:i+1 ← generateGrammar(q1:i+1, GL,Gq1:i)
46: N ← N + 1
47: return Gq1:i+1 , Gq1:i+1

48: end function
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Algorithm 7 computePredictiveDistro
1: function PKC

← computePredictiveDistro(GKC
, P,mf )

2: if cGKC > 0 then
3: for σ ∈ Σ do
4: P (σ)← P (σ) +mf ( c

GKC
σ −t

GKC
σ d

GKC

c
GKC

)
5: end for
6: end if
7: if π(GKC

) exists then
8: P ← computePredictiveDistro(π(GKC

), P, dGKC ·mf )
9: else
10: P ← (1− dGKC ·mf )P + dGKC ·mfPΣ
11: PKC

← P
12: return PKC

13: end if
14: end function

Algorithm 8 updateGrammarState
1: function updateGrammarState(GK , PK , σ, booleanaddC)
2: P

′
K(σ)← PK(σ)

3: if cGK > 0 then
4: P

′
K(σ)← (PK(σ)− c

GK
σ −t

GK
σ dGK

cGK
)( cGK

tGK dGK
)

5: fn ← tGKdGK

6: fd ← cGK
σ + dGK (tGKP

′
K(σ)− tGK

σ )
7: end if
8: if booleanaddC and cGK > 0 then
9: cGK

σ ← cGK
σ + 1

10: booleanaddC ←FALSE
11: booleanaddC ←TRUE w.p. P ′

K(σ)(fn

fd
)

12: if booleanaddC then
13: tGK

σ ← tGK
σ + 1

14: end if
15: else if booleanaddC then
16: cGK

σ ← cGK
σ + 1

17: tGK
σ ← tGK

σ + 1
18: end if

74



www.manaraa.com

Algorithm 9 updateGrammarState (continued)

19: updateGrammarGradient(GK , c
GK , tGK

σ , tGK , P
′
K , d

GK ,mf )
20: updateGrammarState(π(GK), P ′

K , σ, booleanaddC)
21: while cGK > θmax do

22: B = [ c
GK
e0

cGK
,

c
GK
e1

cGK
, . . . ,

c
GK
e|Σ|

cGK
]

23: e∗ ← sample(B) ▷ Bej
= cej

c

24: ϱ← createPartition(cGK
e∗ , tGK

e∗ , dGK )
25: ψ ← ( 1

c
GK
e∗

)ϱ
26: i← sample(ψ)
27: if ϱi = 1 then
28: tGK

e∗ ← tNe∗ − 1
29: end if
30: cGK

e∗ ← cN
e∗ − 1

31: end while
32: end function

Algorithm 10 updateGrammarGradient

1: function updateGrammarGradient(GK , c
GK , tGK

σ , tGK , P
′
K , d

GK ,mf )
2: if cGK > 0 then
3: if |K| = 0 then
4: ψ ← 1.0

δ0

5: ∇0 ← ∇0 + (dGK (tGK ∗ P ′
K − tGK

σ )ψ/cGK )mf

6: else
7: z ← |π(K)|+ 1
8: while z ≤ |K| and z < ω do
9: ψ ← 1.0

δz

10: ∇z ← ∇z + (dGK (tGK ∗ P ′
K − tGK

σ )ψ/cGK )mf

11: end while
12: if |K| ≥ ω then
13: a← z − ω
14: b← |K| − z + 1
15: ψ ← γa(1− γb)/((1− γ)δω)
16: ∇ω ← ∇ω + (dGK (tGK ∗ P ′

K − tGK
σ )ψ/cGK )mf

17: ψ ← log(δω)(aγa−1 − (a+ b)γa+b−1)/(1− γ) + (γa − γa+b)/(1− γ)2

18: ∇ω+1 ← ∇ω+1 + (dGK (tGK ∗ P ′
K − tGK

σ )ψ/cGK )mf

19: end if
20: end if
21: end if
22: end function
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CHAPTER 4

Predicࢢve Analyࢢcs for Biomedical

Datastreams

To determine if the current implementation of the SYNACX framework is sufficient for learn-

ing and building predictive models from biomedical datastreams we performed a series of experi-

ments in which the performance of the framework and various neural network architectures were

evaluated under two different scenarios. In both scenarios, we evaluated the performance of pre-

dictive models constructed directly from non-annotated complex biological system/process data in

an online and unsupervised setting. Thus, the model structure and its parameters were learned in

an incremental manner directly from empirical data. Since many of these systems and processes

are dynamic, it is desirable to learn from time-series/sequence data as opposed to static datasets.

However, unlike the case in some domain applications where a finite length sequence or time-

series dataset is sufficient for learning, in many practical scenarios, it is also necessary to learn

from a datastream consisting of a constant flow of new datapoints with no definitive start or end

point. The SYNACX framework uniquely posesses the ability to construct predictive models in

an unsupervised and online setting through a Bayesian inference process that extracts the variable-

order temporal dependencies found in sequence data and models them in a data abstraction that is

generalizable for multi-scale modeling.
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4.1 Primary Aim

As new data modalities become available for learning, they may introduce datastreams whose

structural and statistical properties differ from past observations due to variability in sampling pro-

cedure, measurement noise, storage constraints, etc. Furthermore, when a given biomedical datas-

tream consists of a sequence of measurements taken from a biological process, the underlying event

or sub-process to which they may correspond is often unknown. Thus, a data-sequence sampled

from one biomedical datastream may differ from another, in terms of its length, dimension or in-

formation content. The primary aim of this chapter is to apply the SYNACX framework and other

machine learning models to biomedical datastreams in order to evaluate their capacity to perform

general-purpose learning from sequence data. To achieve this, the SYNACX framework utilizes an

approximate inference procedure that exploits the Bayesian nonparametric probabilistic structure

of the simplicial grammar modeling formalism and allows for density estimation without necessi-

tating extensive retraining. Recall, the key assumption underyling a simplicial grammar and each

of its simplicial production rules, is the existence of a set of random variables drawn from some

unknown probability distribution. This unknown probability distribution is itself drawn from some

prior distribution. To allow uncertainty in distributional assumptions and to avoid critical depen-

dence on parametric assumptions, each simplicial rewrite-rule is based on a Hierarchical Pitman-

Yor process prior [137] inferred during the incremental learning process. Our goal is to predict the

macro-level behavior and properties of a complex system using a set of local spatio-temporal pat-

terns describing the relations between lower-level elements. To achieve this, patterns are abstractly

represented using simplicial grammar. Put simply, we are representing the behavior of a complex

system by a set of grammar rules which can generate many of the system’s possible spatial and

temporal patterns. The syntactic and nonparametric analysis of a complex system begins with the

decomposition of the collective simplicial grammar G of a complex system intoGj sub-grammars.

This decomposition process can be thought of as a partition of the complex system behavior into

its functional components. Using the spatio-temporal patterns of the system, we try to deduce the

decomposition by treating theGj as latent random distributions. While Markov chains and Hidden

Markov models continue to be among the most popular methodologies for modeling time-series
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and sequence data, the focus of SYNACX algorithm is to model sequences directly, without the

use of hidden states or strict Markov assumptions. Since we are interested in incremental learning

from data sequences of unbounded length over time, the use of a Hierarchical Pitman-Yor process

prior enables us to construct and integrate predictive models with conditional probabilities that are

coupled hierarchically. This allows for the number of variables and the order of temporal depen-

dencies to growwith sequence length rather than require explicit specification a priori as is the case

in most Markov models. Thus, the conditional probabilities used to describe simplicial grammar

rules, with operating dimension d ≥ 0, are parameterized using random probability measures Gq :

P (σ1:T ) =
T∏

i=1
P (σi|σi−1) =

T∏
i=1

Gσ1:i−1(σi) (4.1)

Each random probability measure, Gq(σ), models the probability of observing a simplex σ ∈ K,

conditioned on a simplex chain of previously observed simplices q ∈ K(d), given a hierarchical

Pitman-Yor Process prior:

G∅ ∼ PY P (α∅, d∅, H)

Gq|Gπ(q) ∼ PY P (αq, dq, Gπ(q)) ∀ q ∈ Cd\{∅}

where ∅ denotes the empty chain and π(q) represents a variable-length truncation of chain q. The

treatment of each sub-grammar as a latent variable allows us to express our prior assumptions about

the form of each Gj and the dependence among the Gj for different j.
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Thus, the collection of rules for each simplex σ ∈ Kd, following a context-complex q describes

the simplicial sub-grammar Gq represented by the probability vector Gq = [Gq(σ)]σ∈Kd . The col-

lective (possibly unbounded) set of simplicial rules (latent variables) in the grammar is thereby

denoted G = {Gq}q∈Cd
. Examples of simplicial rules at various dimensions and a boundary homo-

morphism are illustrated in Figures 4.1,4.2,4.4 and 4.3, respectively. In this setup, given an input

data sequence x⃗1:i, the joint probability of its simplex chain representation σ1:i and G is given as:

P (q,G) = P (G)
|q|−1∏
i=0

Gσ1:i(σi+1) (4.2)

where the rightmost term is the probability of each simplex conditioned on the simplex chain of

observations thus far, andP (G) the prior over the unbounded set of latent variables for the collective

grammar.
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4.2 Scenario 1: Modeling a myocardial infarcࢢon from

electrocardiography data

In this scenario we evaluate the applicability of the SYNACX framework and neural network

architectures in learning predictive models of cardiac electrical activity during myocardial infarc-

tion from electrocardiography data. In addition, we highlight why learning algorithms designed to

handle uncertainty become necessary when building comprehensive predictive models of biologi-

cal phenomena from data that may span multiple spatial and temporal resolutions.

4.2.1 Moࢢvaࢢon

Electrocardiography (ECG) is a common diagnostic tool for cardiovascular disease. The finite-

length waveform and the continuous datastream from which it is sampled, can be used to approx-

imate the structure of the human heart and the function of its electrical conduction system over

time. Specifically, when electrodes are attached to the skin, the currents produced by the heart’s

electrical activity can be measured and transformed into waveforms that can be used to evaluate

the heart’s depolarization and repolarization cycle. The ECG waveform illustrates the sequence

of electric potentials occurring in cardiac cells throughout this cycle. As this sequence of electric

potentials is studied over time, various spatial and temporal patterns can be recognized and used to

generalize characteristic features of ECG recordings at multiple levels of granularity. As shown in

Figure 4.5a, an ECG can be described in terms of the sequence of:
80



www.manaraa.com

1) electric potentials providing a fine-grain representation of the heart’s electrical activity,

2) distinct waveform deflections (P,Q,R,S,T waves) indicating the overall direction of depolar-

ization and repolarization,

3) segments and intervals (PR interval, PR segment, QRS complex, QT interval, ST segment,

RR interval) providing a coarse-grain representation that is temporally related to distinct

phases of the cardiac conduction cycle (Figure 4.6a).

Considering the ECG sequence as a sequence of segments and intervals is appealing since limits

can be set on these from which to diagnose deviations from normality. As a result, an ECG can

provide valuable information about a patient’s cardiac status and/or the adverse affects of acute and

chronic conditions. For example, an ECG can aid in the diagnosis of an ischemic cardiac event in

a patient presenting difficulty breathing and chest discomfort. In addition, an ECG may also be

used to indicate how workload increases on the myocardium may be a compensatory response to

chronic dysfunction of another body system (e.g. respiratory system). Given the dynamic nature of

the heart’s electrical activity over both short and long periods of time, the continuous interpretation

of a patient’s ECG is critical to assessing the severity of many effects (e.g., myocardial infarction,

ventricular hypertrophy, or abnormal heart rhythms) as well as the monitoring of the heart’s re-

sponse to treatment 1. However, recognition of the various statistical and structural properties of

an ECG waveform, in relation to the heart’s physiology, often requires a priori knowledge about

the complex systems and processes that exist at multiple levels (genomic, proteomic, metabolic,

cellular, etc) and give rise to the events of the cardiac cycle (i.e. isovolumetric ventricular con-

traction, ventricular ejection, isovolumetric relaxation, ventricular filling, arial systole). In subse-

quent sections, we outline how uncertainty about these underlying complex systems and processes,

their interdependencies and domain-specific datastreams can be accounted for in online and un-

supervised learning settings. To demonstrate how implicit knowledge about multi-level complex

biological systems and processes can inform our decision-making ability in regards to the ECG

waveform, we highlight the significance of the complex interdependencies that underly action po-

tential conduction in cardiomyocytes (cardiac muscle cells) during the cardiac cycle (Figure 4.6).

Each iteration of the cardiac cycle, includes two phases: ventricular diastole (relaxation) and
1Note: An ECG surface recording does not measure the mechanical pumping ability of the heart.
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ventricular systole (contraction). During diastole, the left and right ventricles relax, both atria

contract, and blood is forced through the open tricuspid and mitral valves. The aortic and pulmonic

valves are closed. During systole, the atria relax and fill with blood. The mitral and tricuspid

valves are closed. As the ventricular pressure rises, the aortic and pulmonic valves are forced open.

Both ventricles subsequently contract, and blood flows through the circulatory system. However,

the heart cannot pump unless an electrical impulse is generated and transmitted.2 Cardiac cells

undergo cycles of depolarization and repolarization during impulse transmission. When at rest,

cardiac cells are considered polarized (i.e. no electrical activity is occuring). The cell membranes

of these cardiac cells separate different concentrations of ions, such as calcium, potassium and

sodium (Ca2+, K+, Na+), to create a more negative charge inside the cell (i.e resting potential).

After an impulse is generated, ions cross the cell membrane and cause an action potential (i.e cell

depolarization). When a cell becomes fully depolarized, it tries to return to its resting state in a

process called repolarization. During this process, the electrical charges inside the cell reverse and

return to normal. As shown in Figure 4.5, a temporal relation exists between the action potential

curve (showing voltage changes during the five phases of the depolarization-polarization cycle)

of an individual ventricular cardiomyocyte (Figure 4.5c) and the QRS complex and T wave of

the ECG. This relation can be loosely generalized in terms of the ionic currents and channels that

generate the distinct phases characterizing the action potential (Figure 4.5b) or scrutinized further in

terms of the complex sequence of molecular events leading to cardiac muscle contraction/relaxation

(Figure 4.7). After depolarization and repolarization occurs, the resulting electrical impulse travels

through the heart along the cardiac conduction system. These impulses are initiated at the sinoatrial

node and spread as a wave through the atrial muscle. The impulse travels through the internodal

tracts and Bachmann’s bundle to arrive at the atrioventricular node. When the impulse arrives at

the atrioventricular node, there is a momentary delay that gives the atria time to squeeze blood into

the ventricles before they fire. The impulse then continues to travel through the bundle of His,

the bundle branches, and finally to the Purkinje fibers where it spreads through the walls of the

ventricles. This sequence of electrical events occuring in cardiac cells throughout the conduction
2A small precentage of cardiac muscle cells possess the ability to spontaneously generate electric impulses. These

cells are called autorhythmic cells. They include the pacemaker cells concentrated primarily in the sinoatrial node and
the atrioventricular node.
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process, beginning with the depolarization of the atria (causing them to contract as a unit), and

subsequently the depolarization of the ventricles (also causing them contract as a unit), is precisely

shown in an ECG (Figure 4.6a). A comprehensive and dynamic model of the heart must include

models of these various biological systems/processes along with their interdependencies. ECG

data is one of many data types and sources that should be incorporated in such a comprehensive

predictive model of cardiac activity. Thus, it is desirable for any learning algorithm to be able to

learn and integrate models based on different data modalities (i.e. multi-modal learning). This

process of multi-level model integration may enable researchers to quantify how and why events

at the local and/or global level influence one another and possibly lead to insight about the effect

and propagation of perturbations in biological pathways, as in the case of myocardial infarction.

In addition to the aforementioned challenge of multi-modal learning that we postulate as being

necessary when building any predictive model of cardiac electrical activity, the non-stationary na-

ture of cardiac signals and the effect of different noise sources (e.g. electrode contact noise, muscle

movement artifacts) during the measurement process, can introduce additional uncertainty. This

uncertainty is caused by discrepancies that exist between ECG recordings used during the learning

process. Unlike other types of sequence data such as text which contains a natural segmentation

defined by a distinct set of symbols (e.g. punctuation, end-of-line characters), many biomedical

datastreams do not. In the case of an algorithm trying to learn a predictive model of cardiac elec-

trical activity from an ECG data sequence, with limited a priori knowledge, it is difficult to know

with absolute certainty at what moment in the cardiac cycle an ECG recording may have begun or

ended. For example, without the assistance of expert knowledge or a data pre-processing proce-

dure, we cannot ascertain whether all ECG data-sequences to be used during training of a predictive

model, are of sufficient length and/or depict the same electrophysiological phenomenon we wish to

model (i.e. Does each ECG recording begin with an electrical potential measurement of the same

moment in the cardiac cycle? Does the sequence of electric potentials span the entire duration of

a cardiac cycle?). In addition, regardless of whether the data is in an ideal form, it is desirable for

a predictive model based on a given patient’s ECG data to be resusable in prediction tasks when

applied to a different patient’s ECG datastream. Differences in the statistical properties between

two patients cardiac profile make model reuse or transfer learning a challenging task. Assuming
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ideal data conditions, where all ECG data-sequences are of the same length and capture the same

start and end events of a given electrophysiological phenomenon, two ECG data-sequences of two

patients will not necessarily be similar. In such case, it is desirable for a learning algorithm to

demonstrate the ability to generalize/reuse knowledge about the syntactic (structural) properties of

previously learned patients’ ECG data-sequences during learning of a new patient’s data-sequence.

Thus, the objective is to build general-purpose learning algorithms which can reuse and generalize

knowledge about the distinct waveform deflections (P,Q,R,S,T) and their temporal dependencies

to guide learning of a new ECG. These high-level characteristics (coarse-grain patterns) can be an

alternative strategy to building a model from scratch in cases where limited ECG examples from a

new patient are available for learning (i.e. one-shot learning).

4.2.2 Experiment Design

In this scenario, we evaluate online prediction ability in its most challenging form: after in-

cremental exposure to one real-world complex biological system/process data sequence. As in

the case of many other non-stationary complex biological system/process data sequences where

sample size is limited, we aim to learn the spatio-temporal dynamics of a complex biological sys-

tem/process incrementally without the explicit requirement of extensive retraining. The biomedi-

cal datastreams considered are discretized ECG data-sequences [138] derived from ECG data for

352 torso-surface sites across 4 human subjects with moderate to large myocardial infarctions. A

single data-sequence sample represents a sequence of electric potentials captured over 1640 time-

points from a given patient. Compared to most synthetic or idealized time-series datasets, these

sequences display characteristics commonly observed in real-world biomedical datastreams, in-

cluding data sparsity, multi-dimensionality and variable-order temporal dependencies. In a series

of experiments, the SYNACX algorithm and various neural network models were evaluated under

the constraints of one-shot learning. Specifically, in each experiment, a model was trained to in-

gest as input a training data-sequence and improve its output predictions as the data-sequence is

processed in a feed-forward manner. All neural network models were implemented using Tensor-

flow [139]. Tensorflow is an open source software library, originally released by Google in 2015,

that provides a framework with which deep learning models can be designed, built and trained.
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FIGURE 4.5 Relationship between an individual ventricular cardiomyocyte action potential and an ECG.
The action potential can be decomposed into five unique phases (0-4). The cardiac action actional and its
phases are temporally correlated to the QRS complex and T wave of the ECG. The ECG also illustrates
the anatomical orientation of the wave of depolarization through the heart and the location of recording
electrodes.
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In general, Tensorflow is a Python library that expresses arbitrary computation as a graph of data

flows, where nodes depict mathematical operations and edges represent data (in the form of ten-

sors) transmitted between nodes. Among the most appealing attributes offered by Tensorflow and

the utilization of tensors in building neural networks is its computational efficiency by means of

exploiting the acceleration of parallel tensor operations afforded by GPU hardware.

4.2.2.1 Tasks Evaluated

The set of online predictive modeling experiments conducted for this scenario can be divided

into three distinct tasks. In Task 1a, models with no prior training are constructed from a single

data-sequence from Patient 1, S1. Models are trained on the first 10% of S1 and subsequently tested

on the latter 90%. In Task 1b, the top 5 models generated during Task 1a experiments are evaluated

on a repeat exposure of S1 under the same train/test ratio (10/90). In Task 1c, models with no prior

training are initially trained on the first 99% of S1 and subjected to further training on the first 10%

of a new data sequence from Patient 2, S2, and then tested on the latter 90%.

4.2.3 Results/Discussion

For Task 1a, we evaluated theMLP, RNN and LSTMneural network architectures using various

parameter configurations to provide breadth and depth to our experiments. To begin, architectures

with only one hidden layer and of variable size (1,10, 50, 100, 150 units) were evaluated. In ad-

dition, each neural network configuration was applied with one of three optimization procedures

(Stochastic Gradient Descent (SGD) [40] , AdaptiveMoment Estimation (ADAM) [41], RootMean

Square Propagation (RMSPROP) [42]). ADAM and RMSPROP are popular variants of the stan-

dard stochastic gradient descent algoritm which also adapt the learning rate for each parameter.

Each optimization algorithm was implemented in accordance with their original published form,

with an initial learning rate η = 0.001 used across all methods and decay variables β1 = 0.9,

β2 = 0.999 used for the ADAM method. The performance results for each of these 1-hidden

layer neural network models is given in Tables 4.1, 4.2, 4.3. Figure 4.9 depicts the performance

of a SYNACX-derived model relative to these neural network models. This plot illustrates the

problem of ’model selection’ that exists in neural network models but avoided in SYNACX due
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Model #	hidden	units Training	MSE Test	MSE Train	MSE Test	MSE Train	MSE Test	MSE
LSTM_1L_1 1 0.03 0.53 2.34 3.07 1.05 1.67
LSTM_1L_2 10 0.01 0.51 0.01 0.28 0.01 0.29
LSTM_1L_3 50 0.02 0.72 0.01 0.19 0.01 0.19
LSTM_1L_4 100 0.02 0.64 0.01 0.16 0.01 0.17
LSTM_1L_5 150 0.02 0.63 0.01 0.14 0.02 0.17

SGD ADAM RMSPROP

TABLE 4.1 Task 1a Performance for 1-Hidden Layer LSTM Networks

its use of Bayesian nonparametric modeling methods which are less dependent on specifying the

model complexity a priori. Using the top five single hidden layer neural network models and the

SYNACXmodel, listed in Table 4.4, we evaluate each model’s prediction ability in Task 1b (Table

4.5). Task 1b simply serves as a sanity check against overfitting. In order to evaluate the effect of

increasing neural network depth on model performance, we repeat experiments for Tasks 1a and 1b

with models consisting of 2 hidden layers. Each neural network model was once again constructed

with hidden layers consisting of a variable number of hidden units. Given the negligible difference

in results between optimization algorithms for experiments with 1-layer models, only the ADAM

optimization procedure was implemented in these 2-hidden layer neural network models. In addi-

tion, each 2-hidden layer model was evaluated with an implementation that included the use of the

dropout algorithm [140]. Similar to the previous plot depicting the performance of a SYNACX-

derived model relative to neural network models with a single hidden layer (Figure 4.9), Figure

4.10 further illustrates how the problem of ’model selection’ in neural network models persists,

despite adding more layers to create a deeper neural network model. Whereas Tasks 1a and 1b

both evaluate the ability to perform prediction in the presence of data and model uncertainty, Task

1c begins our evaluation of the the benefits of utilizing a modeling formalism, such as simplicial

grammar, with which a new pattern class (Patient ECG) can be modeled and predicted by reusing

knowledge learned from other pattern classes. In Tables 4.11 and 4.12, Task 1c performance re-

sults for the top five neural network models with 1-hidden layer and 2-hidden layer architectures

are shown, respectively. Figure 4.12 illustrates how the performance of the SYNACX model is on

the same order of magnitude to neural network models with the best optimized model configuration

for Task 1c.

The number of machine learning algorithms being developed and applied to computational
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Model #	hidden	units Training	MSE Test	MSE Train	MSE Test	MSE Train	MSE Test	MSE
RNN_1L_1 1 0.03 0.91 30 32.74 25.65 28.23
RNN_1L_2 10 0.01 0.14 0.01 0.13 0 0.12
RNN_1L_3 50 0.01 0.41 0.01 0.15 0.03 0.15
RNN_1L_4 100 0.01 0.32 0.01 0.13 0.17 0.27
RNN_1L_5 150 0.01 0.39 0.01 0.13 0.01 0.11

SGD ADAM RMSPROP

TABLE 4.2 Task 1a Performance for 1-Hidden Layer RNNs

Model #	hidden	units Training	MSE Test	MSE Train	MSE Test	MSE Train	MSE Test	MSE
MLP_1L_1 1 0.02 0.53 0.02 0.5 0.02 0.5
MLP_1L_2 10 0.04 1.19 0.03 1.07 0.03 0.98
MLP_1L_3 50 0.02 0.78 0 0.28 0 0.23
MLP_1L_4 100 0.01 0.41 0 0.25 0 0.21
MLP_1L_5 150 0.01 0.47 0 0.29 0 0.23

SGD ADAM RMSPROP

TABLE 4.3 Task 1a Performance for 1-Hidden Layer MLP Networks
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FIGURE 4.9 Comparing performance in Task1a for a SYNACX-derived model relative to neural network
models. The neural network models that were evaluated use architectures consisting of a single hidden layer
across various predefined sizes.
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Model #	hidden	units Train	MSE Test	MSE
RNN_1L_2-ADAM 10 0.01 0.13
RNN_1L_4-ADAM 100 0.01 0.13
RNN_1L_5-ADAM 150 0.01 0.13
LSTM_1L_5-ADAM 150 0.01 0.14
LSTM_1L_4-ADAM 100 0.01 0.16

SYNACX 0.02 0.28
TABLE 4.4 Task 1a Performance comparison of top 1-Hidden Layer Architectures vs. SYNACX

Model #	hidden	units Train	MSE Test	MSE
RNN_1L_2-ADAM 10 0.01 0.08
RNN_1L_4-ADAM 100 0 0.08
RNN_1L_5-ADAM 150 0.06 0.13
LSTM_1L_5-ADAM 150 0.07 0.16
LSTM_1L_4-ADAM 100 0.07 0.17

SYNACX 0.02 0.11
TABLE 4.5 Task 1b Performance comparison of top 1-Hidden Layer Architectures vs. SYNACX

Model Layer1	#	hidden	units Layer2	#	hidden	units Train	MSE Test	MSE
LSTM_2L_1 10 10 0.01 0.31
LSTM_2L_2 10 150 0.02 0.25
LSTM_2L_3 150 10 0.02 0.23
LSTM_2L_4 150 150 0.01 0.13

LSTM_2L_5_DO 10 10 0.17 0.64
LSTM_2L_6_DO 10 150 0.05 0.37
LSTM_2L_7_DO 150 10 0.47 0.8
LSTM_2L_8_DO 150 150 0.03 0.15

ADAM

TABLE 4.6 Task 1a Performance for 2-Hidden Layer LSTM Networks

Model Layer1	#	hidden	units Layer2	#	hidden	units Train	MSE Test	MSE
RNN_2L_1 10 10 0.03 0.66
RNN_2L_2 10 150 0.01 0.2
RNN_2L_3 150 10 0.01 0.29
RNN_2L_4 150 150 0.01 0.14

RNN_2L_5_DO 10 10 0.76 1.18
RNN_2L_6_DO 10 150 0.01 0.2
RNN_2L_7_DO 150 10 0.77 0.96
RNN_2L_8_DO 150 150 0.4 0.56

ADAM

TABLE 4.7 Task 1a Performance for 2-Hidden Layer RNNs
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Model Layer1	#	hidden	units Layer2	#	hidden	units Train	MSE Test	MSE
MLP_2L_1 10 10 0 0.46
MLP_2L_2 10 150 0.01 0.54
MLP_2L_3 150 10 0 0.38
MLP_2L_4 150 150 0.01 0.54

MLP_2L_5_DO 10 10 0 0.38
MLP_2L_6_DO 10 150 0 0.44
MLP_2L_7_DO 150 10 0 0.28
MLP_2L_8_DO 150 150 0.01 0.5

ADAM

TABLE 4.8 Task 1a Performance for 2-Hidden Layer MLP Networks

FIGURE 4.10 Comparing performance in Task1a for a SYNACX-derived model relative to neural network
models. The neural network models that were evaluated use architectures consisting of two hidden layers
across various predefined sizes.

Model Layer1	#	hidden	units Layer2	#	hidden	units Train	MSE Test	MSE
LSTM_2L_4-ADAM 150 150 0.01 0.13
RNN_2L_4-ADAM 150 150 0.01 0.14

LSTM_2L_8_DO-ADAM 150 150 0.03 0.15
RNN_2L_6_DO-ADAM 10 150 0.01 0.2
RNN_2L_2-ADAM 10 150 0.01 0.2

SYNACX 0.02 0.28
TABLE 4.9 Task 1a Performance comparison of top 2-Hidden Layer Architectures vs. SYNACX
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Model Layer1	#	hidden	units Layer2	#	hidden	units Train	MSE Test	MSE
LSTM_2L_4-ADAM 150 150 0.01 0.1
RNN_2L_4-ADAM 150 150 0 0.09

LSTM_2L_8_DO-ADAM 150 150 0.07 0.17
RNN_2L_6_DO-ADAM 10 150 0.2 0.3
RNN_2L_2-ADAM 10 150 0.01 0.08

SYNACX 0.02 0.11
TABLE 4.10 Task 1b Performance comparison of top 2-Hidden Layer Architectures vs. SYNACX
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FIGURE 4.11 Overall Top-Performing Neural Architecture vs. SYNACX for Task 1a

Model #	hidden	units Train	MSE Test	MSE
RNN_1L_2-ADAM 10 0.01 0.07
RNN_1L_4-ADAM 100 0.01 0.09
RNN_1L_5-ADAM 150 0.01 0.05
LSTM_1L_5-ADAM 150 0.01 0.09
LSTM_1L_4-ADAM 100 0.01 0.09

SYNACX 0.01 0.23
TABLE 4.11 Task 1c Performance comparison of top 1-Hidden Layer Architectures vs. SYNACX
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Model Layer1	#	hidden	units Layer2	#	hidden	units Train	MSE Test	MSE
LSTM_2L_4-ADAM 150 150 0.01 0.11
RNN_2L_4-ADAM 150 150 0.03 0.14

LSTM_2L_8_DO-ADAM 150 150 0.03 0.19
RNN_2L_6_DO-ADAM 10 150 0.01 0.17
RNN_2L_2-ADAM 10 150 0.01 0.08

SYNACX 0.01 0.23
TABLE 4.12 Task 1c Performance comparison of top 2-Hidden Layer Architectures vs. SYNACX
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FIGURE 4.12 Comparing performance in Task1c for a SYNACX-derivedmodel relative to the top performing
neural network models.
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FIGURE 4.13 Overall Top-Performing Neural Architecture vs. SYNACX for Task 1c

modeling tasks continues to grow over time. This growth is partially due to advances in the tech-

nology that have increased the abundance and availability of large-scale datasets. As a result, algo-

rithms, new and old, have found use in a wide range of new domain applications. The set of models

constructed in our experiments, using LSTMs, RNNs and MLPs, represent only a small subset of

algorithms applicable to the designated tasks. We acknowledge that each neural-network architec-

ture can exhibit superior performance, given additional data and further optimization. However,

the purpose of the experiments performed in this chapter is not to determine whether the SYNACX

algorithm matches or exceeds the performance outcomes of state-of-the-art methods optimized to

perform a specific task. The primary focus of these preliminary studies is to provide a holistic

evaluation of the functionality of the SYNACX framework, as a proof of concept, and to high-

light the intrinsic difficulties associated with learning directly from data of a complex biological

system/process. While not immediately evident in the results shown in Tables 4.1-4.3, training

on only 10% of the data reflects two inherent challenges that any machine learning model must

anticipate when trying to learn from data of a complex biological system/process. In the case of

sampling from novel biomedical datastreams, the challenge is not being able to control the length or

the content of the data-subsequences with which a machine learning model is trained. Put simply,
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without a priori knowledge and/or the use of pre-processing methods, it is difficult to anticipate

1) if a given data-sequence contains sufficient information about the phenomenon we wish to

model.

2) where in a given data-sequence pertinent information about the phenomenon we wish to

model exists.

As can be seen in Tables 4.1, 4.2 and 4.3, the SYNACX algorithm performs generally well against

neural-network architectures implemented with standard stochastic gradient descent (SGD) opti-

mization. However, the performance of these neural network models begins to surpass that of

SYNACX aswe begin tomanipulate themodel parameters, make application-specific assumptions,

and implement more modern optimization procedures. For example, when working with standard

neural-network architectures, several implicit and explicit assumptions regarding the model pa-

rameters (i.e. number of hidden layers, type of neuron used, number of neurons used per layer,

choice of loss function), input data (dimension, length, distribution) and choice of optimization al-

gorithm, must be made during its design, and before it is implemented. These assumptions induce

a learning bias, based on a user’s judgement and prior knowledge, that ultimately affects how well

a model can learn the target function and generalize beyond training data. In the case of time-series

or sequence data, algorithms are often designed and/or optimized to work with data of a known

structure (stationary or nonstationary), length, and dimension. When the data is variable in length,

additional pre-processing methods such as data-padding are utilized so as to fulfill the assumptions

used by the algorithm. The result of these workarounds is a trained model that is superior to other

models for a given task but less intuitive or true to the system from which its data was sampled.

Although we may find and/or train a neural-network prediction model with very high accuracy and

precision from a given dataset, if the system from which data is sampled undergoes an unforeseen

shift in behavior, the trained model may no longer be the most optimal. Thus, it is desirable that

the underlying neural-network model be adaptive, such that it can anticipate changes in observed

spatio-temporal patterns (Figure 4.8 ) and the occurence of system perturbations and black swan

events [141, 142] in a complex biological system/process.
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4.3 Scenario 2: Modeling cell morphology dynamics from live-cell

imaging data

In this section we evaluate the applicability of the SYNACX framework and neural network

architectures in learning predictive models of cell morphology features from time-lapsemicroscopy

image sequences.

4.3.1 Moࢢvaࢢon

The purpose of evaluating various predictive models in this scenario is to contribute a new

method by which to learn and analyze the spatio-temporal dynamics of single-cell properties di-

rectly from empirical data. Despite the substantial knowledge about cellular dynamics obtained

from bulk population-level studies, the heterogeneous nature of many cell-lines requires single-

cell profiling techniques in order to quantify the dynamic processes from which further insights

can be derived. To date, many single-cell approaches have been used in spatio-temporal dynamic

studies, including single-cell RNA-seq for measuring gene expression [143], sorting methods such

as Fluorescence-activated cell sorting (FACS) and single cell mass cytometry (CyTOF) [144] and

microfluidic chip-electrospray ionization mass spectrometry for protein and metabolite analysis

at the single-cell level [145]. Since each of these modalities often introduces its own novel data

type, it is desirable for their respective predictive models to be built in an integrative and general-

purpose manner. To explore this further, we evaluate the feasiblity of using the SYNACX frame-

work and neural network architectures in building predictive models of single-cell dynamics using

pre-processed image feature data obtained from live-cell imaging experiments.

Advancements in time-lapse microscopy have enabled researchers to visualize and evaluate the

variety of complex patterns governing dynamic cellular processes in real-time [146]. One such

cellular process, known as mitosis (cell division), is the process by which genetic material of a

eukaryotic cell is equally distributed between its descendants through nuclear division, resulting in

the birth of daughter cells. Cellular events such as mitosis are frequently accompanied by changes

in cell morphology on a range of spatial and temporal scales, which can be recorded in the form of
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image data via a time-lapse microscopymethod known as live-cell imaging. Live-cell imaging is an

essential tool for deciphering the dynamics of individual cells and cell populations by capturing and

correlating cell morphology and gene-expression profiles at multiple scales of resolution. As new

data modalities become available and models derived from their respective datasets are generated,

it is desirable to integrate them into a single comprehensive model. Insights obtained from these

models of cell morphology can be used to enhance current models of cellular processes, leading to

integrated cellular/gene-expression models. For example, in Figure 4.14 we illustrate the sequence

of events involved in actin based endothelial cell migration. Cell motility experiments performed

on a live-cell imaging platform allow researchers to construct computational models [146–149]

describing changes in morphology during the migration process (Figure 4.14.A). It is desirable

for such models to be subsequently integrated with other quantitative models describing its major

signaling events (Figure 4.14.C) using new empirical data or information found in published litera-

ture [150]. Our motivation reflects that of the previous scenario, where the objective is to provide a

universal and intuitive modeling formalism in which probabilistic generative models of a complex

biological system/process can be derived from multiple data modalities. This can be achieved in

an unsupervised and/or semi-supervised manner via SYNACX’s inductive inference algorithm in

the presence of sequence data or via manual rule creation by domain experts, respectively.

4.3.2 Experiment Design

4.3.2.1 Cell Line

The data used consists of time-lapse microscopy images of MDA-MB231 human breast cancer

epithelial cells and NCTC clone 929 [L cell, L929, derivative of Strain L] mouse fibroblast cells.

Both cell lines were separately maintained in Dulbecco’s Modified Eagle Medium (DMEM, Life

Technologies) supplemented with 10% (v/v) fetal bovine serum (FBS, Hyclone), 100 units/ml peni-

cillin and 100 µ/ml streptomycin (Life Technologies). Cells were maintained in an air incubator at

5% CO2 and 37°C. Twenty four hours prior to imaging, cells were seeded and allowed to adhere

in a 6-well cell culture plate (Corning) at a density of 2x104 cells/well.
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4.3.2.2 Large-Scale Digital Cell Analysis System

The Large-Scale Digital Cell Analysis System (LSDCAS) is an automated live-cell imaging

system capable of examining thousands of living cells for up to one month during a single ex-

periment [147]. LSDCAS is designed for the quantitative study of cell culture populations grown

under conditions that mimic a traditional incubator used in routine biochemical/molecular in vitro

experiments. The system is comprised of hardware for controlled environment image acquisition

that allows for unperturbed cell growth. The main components include an Olympus IX-71 inverted

phase microscope, a Hamamatsu ORCA-285 cooled CCD camera, and an Okolab stage incubator.

The hardware is controlled with software designed in-house to direct stage movement, image auto-

focus, and modification of optical parameters. The input data acquired through this framework

consists of a set of time-lapse image sequences from multiple microscope fields per experimental

sample. An example image sequence for a single microscope field is shown in Figure 4.15. LSD-

CAS can segment and track multiple single-cells, as they grow and divide, to generate individual

cell spatial trajectories as a function of time. To determine these individual cell trajectories, ad-

vanced image processing and machine learning methods are used to determine the borders around

individual cells and cell clusters in each frame of an image sequence. A feature of the resulting cell

borders, the border centroid, is then used to track cell motion frame-to-frame. Subsequent statisti-

cal analysis using the spatial and temporal features extracted from the large amount of cell border

data in a given data set, provide a description of the total distribution of cell speeds in the sample

population, as well as a temporal description of the change in mean cell motility as a function of

experiment time. In a given experiment, 20 microscope fields are acquired for each sample, at

20 min interframe intervals, for three days. With 215 frames acquired per microscope field, each

sample consists of approximately 4300 frames. Thus, the resultant dataset contains approximately

4,000 cell borders associated with 200 single cells explictly modeled and analyzed throughout the

duration of a given experiment.
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FIGURE 4.14 Overview of endothelial cell migration. A, The sequence of changes in morphology observed
during the migration process. The sequence of steps and signaling events typically associated with these
changes in morphology are indicated in B and C, respectively.
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FIGURE 4.15 Time-lapse image sequence captured from single field within cell culture well
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Discrete Cellular Event Spatio-Temporal Characterization

Late Interphase Cell is spread out over cell-culture plate surface, internal structure is visible. Cell has grown to its
largest size before mitosis. Identified based on temporal proximity to beginning of mitosis.

Metaphase Chromosomes are aligned at metaphase plate; cell has become round and borders are bright.
Anaphase/Early Telophase Chromosomes have migrated to opposite poles, nuclear envelope may be reforming but cytokinesis

not yet evident.
Late Telophase/Cytokinesis Cytoplasmic division is complete or nearing completion; two daughter cells are now visible
Early Interphase (Gl) Identified based on temporal proximity to end of mitosis. Internal cellular structure becoming more

visible; cells begin to flatten out over plate surface and growing in size.

TABLE 4.13 Discrete cellular events associated with mitosis

4.3.2.3 Morphology Discreࢢzaࢢon

A single cell’s progression through its life cycle can be observed in a sequence of time-lapse

microscopy images. Morphological and optical changes in the cell can be used to determine the

approximate location of the cell in the cell cycle. Using adherent cell lines and live-cell imaging

techniques, cells can be visually classified throughout the duration of their cell cycle via a finite

set of commonly observed morphological changes (discrete cellular events). An adherent cell can

typically be observed spread out over a cell-culture plate surface, thus allowing visualization of its

internal structure, most notably the cell nucleus. At the time of division, as a cell becomes more

compact and spherical in shape a resultant change in optical properties is observed in digital image

sequences in the form increased pixel intensity. Table 4.13 provides a subset of discrete cellular

events related to mitosis that can be visibly detected using geometric and optical changes in a time-

lapse microscopy image sequence. These discrete events are subsequently used to characterize

the morphology of a cell at a given moment in time. Following the LSDCAS data acquisition

process [146], a dataset,M , describing the morphology of imaged cells is generated. This dataset

consists of data sequences providing a quantitative description of each cell’s morphology over time

(Figure 4.16) in terms of its optical and geometric properties. An element, m ∈ M , of a single

data sequence provides a 4-dimensional representation of a distinct cell at a given time during

imaging. In addition to its timestamp, this data element describes the morphology of a cell in

terms of the parameters: Mean Intensity (i.e. measurement of cell brighthness), Area and Shape

Factor (i.e. measurement of cell’s spherical shape). For each morphology parameter, a vector

quantization procedure is performed in order to obtain a finite alphabet of discrete morphological
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FIGURE 4.16 Distinct morphology shapes captured from live-cell imaging data

states. This alphabet is subsequently used to discretize the spatio-temporal trajectory of a given

cell into a discrete sequence of morphological events. The collection of such sequences for a given

experiment serves as the dataset used in our predictive modeling experiments.

4.3.2.4 Tasks Evaluated

We continue our evaluation of the SYNACX framework in online predictive modeling tasks

by considering discrete sequences of morphology data objects derived from live-cell imaging ex-

periments. In addition to generating predictive models under the constraints of one-shot learning

as was the case in the previous scenario, Tasks 2a-2d evaluate the difference in prediction perfor-

mance under one-shot learning and incremental learning conditions. In Tasks 2a and 2b, predic-

tive models are generated by a given neural-network architecture under various model parameter

configurations (i.e. number of hidden layers, size of hidden layer) and training conditions (i.e.

size of training/prediction datasets). In Task 2a predictive models, training is performed (90/10

train/prediction) on two consecutive training datasets D1,D2, each of which contains variable-

length data sequences forN distinctMDA-MB231 cells derived from time-lapsemicroscopy image

sequences in a given microscope field. The resultant training models’ prediction ability is subse-

quently evaluated on a new dataset D3, also consisting of N variable-length data sequences, with

a 10/90 training/prediction ratio. Task 2b predictive models use the same model configuration as

those in Task 2a but are not subjected to the same two-part consecutive training process. Thus,

predictive models are immediately evaluated following a 10/90 train/prediction ratio. In Tasks 2c

and 2d, we evaluate the transfer learning ability of the predictive models generated in Task 2a and

2b but interchange the prediction datasetD3 with the novel datasetD4. D4 corresponds to the set of

variable-length data sequences forN distinct L929 cells derived from time-lapse microscopy image

sequences in a given microscope field. Finally, in Task 2e, neural network architectures similar to
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those constructed for previous tasks are applied in the predictive classification of cells undergoing

mitosis. Classification, which is the task of assigning objects to one of several predefined classes,

is a pervasive problem that encompasses many applications in biology and medicine. The input

data for this binary classification task is the sequence of records corresponding to the morphology

of a single cell in a given microscope field, sampled every 20 minutes over 72 hours. Each record

is characterized by a tuple (x, y), where x is the attribute set and y is a special attribute, designated

as the class label. The attribute set in this task corresponds to the 4-dimensional data elementm for

a single cell and the class label is a binary attribute indicating whether or not the cell is undergoing

mitosis at the given timestep. The goal during this task is to learn a target function f (or classi-

fication model), under one-shot learning conditions, that maps each attribute set x to one of the

predefined class labels y. This classification model is used to predict the class label of unknown

records. Thus, for each neural network architecture, a training set consisting of the sequence of

records (for a single cell) whose class labels are known is used to build a classification model. This

classification model is subsequently applied to the test set, consisting of the sequences of records

(for all cells in a given microscope field) with unknown class labels. Six neural network models

are evaluated at increasing hidden-layer sizes for each of the Tasks 2a-2e. In these experiments,

models are trained with a recurrent layer consisting of either a GRU or LSTM.

4.3.3 Results/Discussion

Despite higher than expected RMSE values, all recurrent neural network models were found to

perform significantly better than the SYNACX model. Without undergoing the iterative process

commonly used to train neural networks, no particular model within the set of predictive models

generated from live-cell imaging data sequences forMDA-MB231 cells under incremental learning

(Table 4.14) or one-shot learning (Table 4.15) demonstrated strong predictive performance results

(Figure 4.18). Although all predictive models trained with incremental learning on two consecu-

tive datasets demonstrated modest gains in predictive performance relative to those that did not,

subsequent experiments must be conducted in order to determine if and with what size of larger

dataset such predictive models can match the performance of neural networks subjected to exten-

sive iterative training. In Tasks 2c and 2d where transfer learning ability was loosely evaluated on
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predictive models intially trained on MDA-MB231 cell sequence data and further trained on L929

cell sequence data, predictive performance was higher than initially expected. As with Tasks 2a,2b,

predictive models trained under incremental learning (Table 4.16) performed better than those un-

der one-shot learning (Table 4.18). Despite not demonstrating the highest predictive performance

in Task 2c, the SYNACX model was able to outperform all other models under the constraints of

one-shot learning in Task 2d, while also slightly decreasing it MSE from Task 2c (Figure 4.19).

As with Tasks 2a and 2b, further experimentation is necessary in order to determine the optimal

training dataset size for all predictive models.

As previously mentioned in Section 2.0.2, the Simplicial Grammar modeling formalism pro-

vides an inherent method for data dimensionality reduction in modeling applications involving

complex biological systems and processes. Similar to other rule-based approaches for biological

system modeling [151–154], the use of a finite set of rules provides an alternative approach to the

traditional modeling paradigm based on systems of differential equations [155,156] that is beset by

the problem of combinatorial complexity. This problem naturally arises in modeling applications

where the interdependencies between system/process components can result in a combinatorial ex-

plosion of possible model configurations, making enumeration computationally expensive. In Task

2e, we were interested in the predictive classification of each cell undergoing mitosis within a given

time interval and microscope field.3 While the classification models evaluated in Table 4.18 were

applied to the same test dataset, all except for the SYNACX model were trained with the training

dataset. Given the computational costs associated with generating a new classification model from

scratch and applying it to the large number of cells for this task, we sought to reuse prior knowl-

edge (collective grammar learned during Task 2d) for purposes of building the SYNACX classifer

and reducing the model search space to include only a subset of the cells (data sequences) neces-

sary for the testing (prediction) phase. Using the simplicial grammar inferred from prior predictive

modeling tasks, mitosis could be classified in terms of:

1) the sequence of pattern primitives (Figure 4.17a) corresponding to discrete cellular events

observed during mitosis within the live-cell imaging data (Table 4.13),
3 Since mitosis is a dynamic event characterized by both spatial and temporal patterns, the accuracy and computa-

tional cost of performing this classification task for a large population of cells (each varying in their migratory behavior
over time) is highly dependent on the accuracy of border segmentation and image sampling procedure.
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2) the sequence of variable-order temporal dependencies corresponding to simplicial production

rules (Figure 4.17b) associated with the transitons from one phase of mitosis to another,

3) the cyclic spatio-temporal patterns (corresponding to recurrent sequences of primitives and/or

simplicial rules), observed throughout the lifetime of each cell.

As shown in Figure 4.20, the application of inferred simplicial production rules associated with a

specific system behavior (i.e. mitosis) can reduce the number of relevant system components prior

to performing any further modeling tasks. In Figures 4.20a and 4.20b, images of cells present in a

given microscope field at timestep t0 are depicted in their original and pre-processed (with border

segmentation) forms, respectively. Model search space reduction was achieved by first performing

a quantization step, in which all cells at a given time-step were mapped to the 0-simplex pattern

primitive (Figure 4.20c) that best resembled their morphology. Subsets of simplicial production

rules (Figures 4.20e and 4.20g) from the existing sub-grammar encapsulating patterns associated

with mitosis were sequentially applied to the field of 0-simplices to obtain a reduced modeling

space containing only specific components of interest (i.e cells predicted to undergo cell division)

(Figure 4.20h). It is with this subset of cells and their associated data sequences that all classifi-

cation models were evaluated during the testing (prediction) phase. Whereas the neural-network

classification models required an initial training phase the SYNACX model did not. In Figure

4.21, we illustrate the incremental process by which SYNACX infers the appropriate predictive

model for a given system component (L929 cell) based on its corresponding sequence of obser-

vations in the reduced model search space. At each time-step, SYNACX evaluates the current

data element associated with a system component, given the sequence of previously observed data

elements and the collective grammar from Task 2c. The accuracy of SYNACX and the collec-

tive grammar in its new role as a classification model is evaluated by quantifying how often it

correctly interprets the current input data element as a simplicial production rule from a previous

inferred sub-grammar whose context-complex encapsulates the primitives, variable-order temporal

dependencies and cyclic pattern associated with mitosis. Despite this flexibility in shared represen-

tation that allows for SYNACX and the simplicial grammar modeling formalism to train a universal

model that can be used for different but related tasks, its classification and predictive performance

is highly dependent on the quality of the live-cell imaging data used during the initial learning pro-
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Train	MDA-MB-231 Test	MDA-MB-231
Model Neuron	type #	units Neuron	type #	units Neuron	type #	units RMSE RMSE
LSTM	1L	 LSTM 150 - - - - 303.897894 499.3848716
LSTM	2L	 LSTM 150 LSTM 150 - - 301.6125495 507.7005909
LSTM	3L	 LSTM 150 LSTM 150 LSTM 150 305.1120614 509.2072466
GRU	1L	 GRU 150 - - - - 304.7398235 499.7216325
GRU	2L	 GRU 150 GRU 150 - - 307.4978049 500.6681336
GRU	3L	 GRU 150 GRU 150 GRU 150 313.9821332 511.9859568
SYNACX - - - - - - 438.4395397 655.8316781

L1 L2 L3

TABLE 4.14 Task 2a: Online Prediction for MDA-MB231 cells with Incremental Learning

Train	MDA-MB-231 Test	MDA-MB-231
Model Neuron	type #	units Neuron	type #	units Neuron	type #	units RMSE RMSE
LSTM	1L	 LSTM 150 - - - - 329.2765251 534.1024808
LSTM	2L	 LSTM 150 LSTM 150 - - 358.6660843 559.2743334
LSTM	3L	 LSTM 150 LSTM 150 LSTM 150 464.5311184 724.6649916
GRU	1L	 GRU 150 - - - - 315.487892 517.4750912
GRU	2L	 GRU 150 GRU 150 - - 344.2288192 550.7346366
GRU	3L	 GRU 150 GRU 150 GRU 150 363.6992026 567.9408596
SYNACX - - - - - - 430.6698271 677.1494665

L1 L2 L3

TABLE 4.15 Task 2b: Online Prediction for MDA-MB231 cells with One-Shot Learning

cess 4. This dependence relation between data quality and classification performance is reflected

in the results of Task 2e. As shown in Table 4.18, the accuracy of the SYNACX classification

model is significantly lower than all neural-network configurations. Upon further investigation, it

was discovered that in addition to the non-stationary behavior of migratory cells, errors that arose

during image sampling and segmentation caused SYNACX to learn grammar rules for phantom

phenomena (spatio-temporal patterns of noise and image artifacts observed in a data sequence).

The presence of sub-grammars corresponding to these phantom phenomena within the collective

grammar were found to distort the predictive models of other grammars. Thus, subsequent exper-

iments must explore the use of alternative border segmentation methods that can overcome some

of the limitations of the current approach, primarily image occlusion [157] caused by the growth

in cell population within a fixed volume cell culture well.

4Data quality in this context refers to how well the phenomenon being modeled (cell morphology of a single cell)
is represented by the data sequence used during the learning process. Choice of sampling rate and image segmentation
method are very influential in this respect.
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phology pattern-primitives.

FIGURE 4.17 Simplicial Grammar production rules inferred from experiment dataset

Train	L929 Test	L929
Model Neuron	type #	units Neuron	type #	units Neuron	type #	units RMSE RMSE
LSTM	1L	 LSTM 150 - - - - 97.26700365 131.9648059
LSTM	2L	 LSTM 150 LSTM 150 - - 90.33769977 126.0110709
LSTM	3L	 LSTM 150 LSTM 150 LSTM 150 73.27885097 115.9963361
GRU	1L	 GRU 150 - - - - 91.69362028 127.8651243
GRU	2L	 GRU 150 GRU 150 - - 56.62261032 105.6557145
GRU	3L	 GRU 150 GRU 150 GRU 150 63.66757416 114.2783882
SYNACX - - - - - - 0 128.6685276

L1 L2 L3

TABLE 4.16 Task 2c: Online Prediction for L929 cells with Incremental Learning

Train	L929 Test	L929
Model Neuron	type #	units Neuron	type #	units Neuron	type #	units RMSE RMSE
LSTM	1L	 LSTM 150 - - - - 463.0643476 468.0598252
LSTM	2L	 LSTM 150 LSTM 150 - - 408.5169764 414.7995781
LSTM	3L	 LSTM 150 LSTM 150 LSTM 150 425.1505145 431.0111483
GRU	1L	 GRU 150 - - - - 368.4471468 375.9465388
GRU	2L	 GRU 150 GRU 150 - - 362.0095164 369.6934406
GRU	3L	 GRU 150 GRU 150 GRU 150 268.3646586 280.487005
SYNACX - - - - - - 0 127.2681421

L1 L2 L3

TABLE 4.17 Task 2d: Online Prediction for L929 cells with One-Shot Learning
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FIGURE 4.18 Evaluation of model prediction performance using MDA-MB231 cell sequence data under dif-
ferent training conditions.
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FIGURE 4.19 Comparing prediction and transfer-learning performance of the SYNACX model relative to
neural network models using L929 cell sequence data under different training conditions.
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(a) Cells within microscope field of view at time t0 (b) Cells within microscope field of view at time t0
with automated border segmentation
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phology pattern-primitives
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(d) Cells within microscope field of view at time t0
as depicted graphically by vertices
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c} to Figure
4.20c.
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FIGURE 4.20 Application of simplicial grammar to reduce model space complexity.
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Train/Test Model Neuron	type #	units Neuron	type #	units Neuron	type #	units Accuracy
10%/90% LSTM	Binary	classifier LSTM 150 - - - - 86.59
10%/90% LSTM	Binary	classifier LSTM 150 LSTM 150 - - 86.59
10%/90% LSTM	Binary	classifier LSTM 150 LSTM 150 LSTM 150 86.59
10%/90% GRU	Binary	classifier GRU 150 - - - - 86.59
10%/90% GRU	Binary	classifier GRU 150 GRU 150 - - 86.59
10%/90% GRU	Binary	classifier GRU 150 GRU 150 GRU 150 86.59

SYNACX - - - - - - 73

L1 L2 L3

TABLE 4.18 Task 2e: Predictive Classification of Mitosis in L929 cell seqeuence following One-Shot Learn-
ing
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CHAPTER 5

Summary and Future Work

5.1 Summary

In this thesis we have described the development and application of the simplicial grammar

modeling formalism and SYNACX framework for learning and building probabilistic generative

models of complex biological systems/processes directly from real-world data sequences. This

newmodeling formalism and approximate inference scheme provides a unified probabilistic frame-

work to decompose complex system behavior into modular grammar rules which parsimoniously

describe the spatial/temporal structure and dynamics of patterns inferred from time-series data.

The key advantage of simplicial grammars which makes them ideal for general-purpose learning

is their ability to appropriately represent and recognize the large intra-class variablities between

patterns in terms of their compositionality (i.e. decomposition of a pattern into a distinct configu-

ration of sub-patterns) and reconfigurablity (i.e. representation of a pattern using multiple distinct

configurations). In addition to allowing the number of components to vary during inference, as in

traditional Bayesian nonparametric models, the use of simplicial grammar in the SYNACX model

provides a flexible approach to modeling higher-order representations of the state and dynamics of

a complex system despite model and data uncertainty. As a result, the simplicial grammar modeling

formalism and the SYNACX framework provide an alternative software platform for extracting,

consolidating and visualizing knowledge in applications where multi-modal, transfer, multi-task

and one-shot learning are to be combined.

Our preliminary experiments using SYNACX in online prediction tasks demonstrate the utility
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of this novel approach as a possible alternative to popular gradient-based neural-network archi-

tectures in one-shot learning applications where subtle and latent patterns are to be inferred from

various data sources over time, given limited a priori knowledge. Given the rapid pace of techno-

logical advancement in the field of deep learning, we look to develop extensions of the SYNACX

framework incorporating more elements from memory-augmented networks [110,113] in an effort

to achieve greater performance results in all evaluated tasks. Subsequent experiments involving

heterogeneous datatypes generated across multiple spatio-temporal scales will be used to further

investigate the use of simplicial grammar and its topological invariants as a means for integrat-

ing models of global behavior with those of local interactions. Building such models of complex

biological systems and processes from the molecular level up to the entire organism will allow

researchers to close the computational gap in systems biology. The challenge is to construct and

integrate all these models in a data-driven manner that enables discovery and enhances our under-

standing of the processes, sub-systems and interdependencies that exist across multiple spatial and

temporal scales.

5.2 Future Work

Many of the modeling applications in systems and computational biology have focused on in-

tracellular dynamics. We strive to build computational models that encapsulate how emergent

global behavior and functionality is heavily influenced by the interactions and local dynamics of

lower-level sub-systems, and vice-versa by also incorporating quantitative models of behaviors oc-

curing at the population level. To achieve this, we look to extend our work in Artificial General

Intelligence to building agent-based models of a general class of complex systems, called Com-

plex Adaptive Systems [158]. Such systems encompass a broad range of biological phenomena. A

hallmark of complex adaptive systems is the existence of heterogeneous components, often called

agents, which adapt and evolve as they interact in their environment. The combination of such a

diverse array of agents, each interacting with other agents gives rise to a system that is complex due

to the conditional interactions that dictate their behavior and adaptive because of an agent’s inher-

ent ability to learn from each interaction. Due to the non-linearity that arises from these conditional
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interactions, a complex adaptive system does not have a single governing equation or rule by which

the system is controlled. Although its many distributed, interacting agents display little if any cen-

tral control, each is governed by a generative process that can be described by a set of local rules.

If defined in terms of the spatial and temporal patterns of the system, this collection of rules may be

regarded as a grammar expressing patterns as a composition of subpatterns and pattern primitives.

The unsupervised learning of these rules and their underlying patterns falls under the class of facto-

rial learning problems in which the goal is to identify the multiple independent causes or factors that

accurately characterize the observed data. This learning problem often arises in response to the ac-

tual process by which the data was generated. For high-throughput, biological time-series data that

may result from interactions across multiple scales, the goal is to invert the data generation process,

and identify a representation that concisely describes the data and reflects its underlying causes and

interdependencies. Agent-based models depict populations of autonomous agents, each following

a set of internal rules and interacting with each other within a shared virtual environment. With this

approach, researchers can move beyond modeling approaches based a single level of representation

towards multi-scale simulations and representations which may enable further insights about the

relationship between microscopic rules of the agents and macroscopic behaviors of the population.

By using the aforementioned SYNACX framework and incorporating elements of reinforcement

learning, we seek to infer the set of internal rules that define agent behavior directly from biological

sequence data. The aim of this future work is build agent-based models of biological phenomena

with which researchers can explore and discover the scope of novel targets useful for therapeutic

intervention in-silico, with minimal time, computational resources or expert supervision.
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